
International Journal of Scientific and Research Publications, Volume 6, Issue 5, May 2016      593 
ISSN 2250-3153   

www.ijsrp.org 

Role of Glutathione S-Transferase (GST) in Mosquito 

Physiology and Anti-Plasmodial Activity 

Tripathy,  A.
1
, Mohanty A. K.

2
 and Kar S. K.

3
 

 
1 Bhadrak Autonomous College (Department of Higher Education, Govt. of Odisha), Bhadrak-756100, Odisha, India   

2Department of Pediatrics, KIMS, KIIT University, Bhubaneswar, Odisha, India 
3
Director (Research) Medical and Life Science IMS and SUM Hospital, S ‘O’ University, Bhubaneswar (Ex-Director, RMRC ( ICMR)) BBSR, 

Odisha, India 

 

 
Abstract- Malaria transmission depends on the competence of 

selective Anopheles mosquitoes that plays role of intermediate 

host. The innate immune system of most mosquitoes (non-

vectors) is able to completely clear a Plasmodium infection, 

preventing parasite transmission to humans. Mosquito defense 

against malaria parasites involves variety of biological processes, 

among which ROS (Reactive Oxygen Species) are important 

determinants of parasite invasion to the mosquito. ROS are toxic 

by-product of cellular metabolism in all living beings. The living 

cells create potent antioxidant enzymes which detoxify ROS.  

The detoxifying enzymes are superoxide dismutase (SOD), 

catalase (CAT), glutathione S-transferase (GST), glutathione 

peroxidase and glutathione reductase. The Glutathione-S-

transferases (GSTs) are a diverse family of enzymes involved in 

a wide range of biological processes. Our previous study 

demonstrated that elevated GST activity played a role of resistant 

phenotype (to insecticide) in the mosquito, which is directly 

related to vectorial capacity and competence. The study of role of 

GST in mosquito physiology will give an insight in terms of 

effect of insecticide application on the vector and Plasmodium 

parasite development inside the vector, which has potential to 

explore more powerful and effective malaria control tool. 

 

Index Terms- Glutathione S-transferase, mosquito physiology, 

insecticide resistance, anti-Plasmodial activity 

 

I. INTRODUCTION 

he global public health problem of malaria persists today. 

Malaria transmission depends on the competence of 

selective Anopheles mosquitoes that plays role of intermediate 

host. They pick up gametocyte of Plasmodium from infected 

human host and transmit the sporozoites into the healthy, which 

initiates a complex physiological mechanism inside the mosquito 

midgut (including mosquito immune system in the hemolymph) 

to sustain plasmodium development (susceptibility) (Kumar et 

al., 2003).  .  Oocyst formation in mosquito gut may pose 

bottleneck in the parasite life cycle, as most parasites die either 

during midgut invasion or as they come in contact with 

components of the mosquito immune system present in the 

hemolymph (Vlachou & Kafatos, 2005; Blandin et al., 2004).  

The innate immune system of most mosquitoes (non-vectors) is 

able to completely clear a Plasmodium infection, preventing 

parasite transmission to humans. Mosquito defense against 

malaria parasites involves variety of biological processes, among 

which ROS (Reactive Oxygen Species) are important 

determinants of parasite invasion to the mosquito.  

        ROS are toxic by-product of cellular metabolism in all 

living beings. The living cells create potent antioxidant enzymes 

which detoxify ROS.  The detoxifying enzymes are superoxide 

dismutase (SOD), catalase (CAT), glutathione S-transferase 

(GST), glutathione peroxidase and glutathione reductase. Foreign 

infections in the host cell cause oxidative stress and generates 

higher ROS production which disturbs the balance between ROS 

and antioxidant defenses. Similar mechanism occurs during 

Plasmodium infection in the mosquito.  Previous studies have 

shown that higher levels of ROS are synthesized in mosquito 

hemolymph during   Plasmodium development and limit 

Plasmodium development (Dejong et al., 2007; Molina-Cruz et 

al., 2008).  

        The Glutathione-S-transferases (GSTs) are a diverse family 

of enzymes involved in a wide range of biological processes. 

They play a central role in detoxification of both endogenous and 

xenobiotic compounds and are also involved in physiological 

processes such as intracellular transport, biosynthesis of 

hormones and protection against oxidative stress (Enayati et al., 

2005). It is also believed that these enzymes are a family of 

detoxification enzymes that have essential roles to play in the 

survival of insects exposed to endogenous and erogenous 

xenobiotics (Kostaropoulos et al., 1996). The enzyme plays an 

important role in maintaining the redox status of the mosquito 

cell, particularly in relation to vectorial capacity and resistance 

(Ranson and Hemingway, 2005). Many studies have shown a 

decrease in reduced glutathione (GSH) concentrations during 

aging (Abraham et al, 1978; Hazelton and Lang, 1980; Tripathy 

& Kar, 2015 in press). Our previous study demonstrated that 

elevated GST activity in the mosquito played a role of resistant 

phenotype (to insecticide) and directly related to vectorial 

capacity and competence (Tripathy et al., 2011). The above 

mentioned importance of glutathione-S-transferases in 

detoxification encouraged us to review its role in mosquito 

physiology. The review will give an insight in terms of effect of 

insecticide application on the vector and Plasmodium parasite 

development inside the vector, which has potential to explore 

more powerful and effective malaria control tool. 
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II. ROLE OF GST IN MOSQUITO PHYSIOLOGY 

        Today, insecticide resistance has been reported in all main 

mosquito vector species and geographical regions with high 

parasite-related mortality and morbidity (Roberts & Andre 1994; 

Ranson et al., 2011). Main physiological mechanisms of 

insecticide resistance have evolved in mosquitoes: (i) the 

overproduction of detoxifying enzymes that sequester and/or 

degrade the insecticide before it reaches the nervous system 

(metabolic resistance) and (ii) mutations in the insecticide neural 

targets that render them less sensitive to the insecticide’s active 

ingredient (target site resistance). It has been observed by 

Poupardin et al., (2008) that the potential of xenobiotics present 

in polluted mosquito breeding sites affected their tolerance to 

insecticides through cross-induction of particular detoxification 

genes. Similarly the xenobiotics present in the mosquito blood 

meal might have affected their tolerance to insecticide. An 

enhanced ability of the insecticide resistant insects to tolerate 

oxidative stress has also been implied by the protective role of 

glutathione S-transferases (Vontas et al., 2001). Mittapalli et al., 

(2007)  studied the GST expression in the Hessian fly and found 

that the product of the Delta GST genes aid in detoxifying 

exogenous allelochemicals from the host plant (wheat), while 

that of a Sigma GST could function in providing protection 

against toxic oxygen species generated endogenously during 

development. An enhanced ability of the insecticide resistant 

mosquitoes to tolerate oxidative stress was implied by protective 

role of Glutathione S- transferase (Tripathy et al, 2011). 

        Blood feeding or hematophagy is a behavior exhibited by 

female mosquitoes which is essentially required for reproduction 

and transmission of pathogens (Dana et al, 2005). For most 

mosquitoes living in optimal field or laboratory conditions, this 

cycle requires about 72 hours and involves a complex series of 

biological events including peritrophic matrix formation, blood 

digestion, oocyte development, vitellogenesis and excretion 

(Dana et al, 2005). Acquisistion of a blood meal stimulates 

midgut proteolytic activity such that approximately 80% of the 

protein content is digested within 24 hours (Billingsley and 

Hecker, 1991; Jahan et al, 1999; Lemos et al. 1996). Multiple 

aminopeptidases have been isolated from hematophagous insects 

and it has been suggested that they may play different roles in 

digestion (Billingsley, 1990; Hori et al., 1983; Cheeseman & 

Gooding, 1985; Ferreira & Terra, 1986); thus the GST activity 

may be associated with the above physiological processes of the 

mosquito, as they (GSTs) are involved in metabolic cycle for the 

transport of certain amino acids across the membrane of the 

malpighian tubules (Enayati et al, 2005). 

        Mosquitoes such as Anophelines must ingest a blood meal 

to obtain the nutrients required for oogenesis. The blood meal 

itself brings metabolic changes and induces a state of oxidative 

stress (Felix et al., 2010). The blood is digested by the midgut 

and nutrients are transported to the fat body where vitellogenin 

and other major proteins of the egg yolk are synthesized (Attardo 

et al, 2005). Blood fed females respond to oxidative stress by 

increasing systemic expression of ROS detoxification enzymes 

(Molina-Cruz et al., 2008). In An. gambieae Dejong et al., (2007) 

observed that H2O2 levels in hemolymph increased dramatically 

after a blood meal, due to increased metabolic activity during the 

process of blood digestion and oogenesis. Hence it may be 

postulated that higher GST activity during gonotrophic cycle 

might be associated with the enhanced levels of H2O2 as GST 

scavenges H2O2. According to Dejong et al, (2007), ROS 

detoxification by catalase increases the reproductive output by 

protecting the ovary and the early embryo from oxidative 

damage but the transient and local accumulation of ROS appears 

to be necessary for normal mosquito physiology. Kumar et al., 

(2003) analyzed ROS levels in hemolymph of the refractory 

strain of An. gambie and suggested that clearance of H2O2 a rate 

limiting step in free radical detoxification. Their study also 

confirmed that H2O2 level increase in responses to blood feeding. 

According to Lumjuan et al., (2007), out of the three mosquito 

specific GSTs, GSTX2-2 showed an affinity for hematin and 

this, indicates a role of these enzymes in protecting mosquitoes 

against heme toxicity during blood feeding. 

 

III. DOES INSECTICIDE RESISTANCE ALTER VECTORIAL 

COMPETENCE AND IMPACT TRANSMISSION? 

        Insecticide resistance has an impact on the transmission of 

diseases directly by increasing the number of mosquitoes in the 

population. It has been recently suggested that insecticide 

resistance may also have an impact on the quality of these 

mosquitoes (McCarroll et al., 2000; Rivero et al., 2010). 

Mosquitoes indeed provide a very specific environment in which 

the parasites differentiate, proliferate and migrate to the 

appropriate host to ensure transmission to the next host. A 

modification in any of the factors that make up this complex 

physiological environment can drastically alter the vectorial 

competence of mosquitoes (Dong et al, 2006; Garver et al, 

2009). The mosquito immune system appears to be one of the 

most important of these factors. Mosquitoes exhibit sequential 

immune responses to combat infection. These responses can be 

classified into two types: constitutive (which are always present 

and ready to act) and induced (which are expressed only after the 

host has been exposed to an infection (Hamilton et al, 2008). 

Endogenous innate immune molecules of mosquitoes have been 

shown to hinder the development of malarial (Luckhart et al., 

1998) and filarial (Shiao et al., 2001) parasite; also arbovirus 

infection (Sanchez-Vargas et al., 2009). Vontas et al., found a 

differential expression of some of these immune effectors genes 

(2005, 2007) suggesting a potential link between insecticide 

resistance and the insect immune system. In this context it needs 

to explore qualitative effects insecticide resistance on the ability 

of mosquitoes to transmit malaria; are insecticide resistant 

mosquitoes as good vectors of Plasmodium as susceptible ones? 

Surprisingly little is known as to whether insecticide resistance 

interferes with the subsequent development of Plasmodium 

within the vector.   

 

IV. DOES PARASITE ALTER THE BEHAVIOR OF MOSQUITO 

VECTOR? 

        Malaria parasites have been suggested to alter the behavior 

of mosquito vectors to increase transmission (Cator et al, 2012). 

Parasite manipulates the vector and increases vector feeding rate 

once they have become infectious (sporozoite stage) (Alano, 

2007). According to the manipulation hypothesis, malaria 

parasites decrease mosquito blood-feeding and other risky 
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behaviors during the pre-infectious phase thereby decreasing the 

risk of host death during parasite development (oocyst stage) and 

parasite then increase vector feeding rate once they have become 

infectious (sporozoite stage) (Cator et al, 2012). This 

manipulation hypothesis has been supported by many laboratory 

and field based evidences (Cator et al, 2012). In laboratory 

studies, female mosquitoes infected with oocyst-stage malaria 

parasites were less persistent at blood-feeding and less likely to 

resume feeding if interrupted (Sinden, 1998). Other studies 

reported that sporozoite infected females probed more frequently 

than uninfected controls (Sinden, 1998; Ayala, 1999). It was 

reported by Sinden (1998), sporozoite-infected females also took 

less blood per meal, which in the field may lead these females to 

feed more than once within a gonotrophic cycle.  Other studies 

found that infection status did not affect blood-meal size (Liu et 

al., 2010) or probing duration (Prugnolle et al., 2010). The 

multiple feeding behavior of vector can increase transmission of 

a vector-borne pathogen by four times through enhanced 

survival, fecundity and vectorial capacity (Scott & Takken, 

2012). Due to multiple feeding behavior of mosquitoes the 

infection rates in mosquito vectors can range from < 1% to 5% 

for the incidence of malaria and dengue (Gilles and Warrell, 

1993). Several studies suggest that malaria parasites manipulate 

mosquito behavior to facilitate transmission but the nature and 

extent of the phenomenon remains unclear. Changes in mosquito 

behavior following parasite invasion could be a pathological 

consequence of infection or a manifestation of the mosquito 

immune response to infection or an interaction between the two 

[39]. Based on above it is yet to reveal the factors that favour 

frequent and preferential feeding on humans and its 

epidemiological consequences are needed. Increased research 

attention on the frequency of mosquito vector-host contact will 

enhance prospects for developing more successful disease 

prevention tools, strategies and also add to the capacity of risk 

assessment. The behavioral changes differences between infected 

and uninfected females should be considered in epidemiological 

models and in development /implementation of control measures.  

 

V. DOES PLASMODIUM INFECTION ALTER DETOXIFICATION 

GENE EXPRESSION IN MOSQUITO VECTOR? 

        The mosquito becomes infected with the malaria parasite by 

taking a blood meal. The blood meal itself brings metabolic 

changes and induces a state of oxidative stress [47], [48].  This 

further increased by the presence of Plasmodium parasites in the 

blood meal [5]. During mosquito response to infection, active 

nitrogen and oxygen radicals are produced to contain 

Plasmodium infection [47], [5]. These products may represent 

potential oxidative stress that can be ameliorated or eliminated 

by detoxification enzymes. For example several glutathione S-

transferases (GSTs) have peroxidase activity and help to 

eliminate ROS [8]. GST expression can also be induced by 

reactive oxygen species (ROS) [49], [16].  The studies by 

Jaramillo-Gutierrez et al, revealed that OXR1 gene regulates the 

basal levels of catalase (CAT) and glutathione peroxidase (Gpx) 

expression and in An. gambiae this gene silencing decreases 

Plasmodium infection in the mosquito[50].  

 

VI. POSSIBLE ANTI-PLASMODIAL ROLE OF GST IN MOSQUITO 

VECTOR 

        Previous studies have shown that higher levels of reactive 

oxygen species (ROS) in mosquito hemolymph limit the 

Plasmodium development [4], [5]. The intake of blood meal by 

the mosquito brings metabolic changes and induces a state of 

oxidative stress and further it is increased by the presence of 

Plasmodium parasites in the blood meal [26]. Elevated level of 

reactive oxygen species plays a role in contributing to the 

parasite melanotic encapsulation [1], [51].  

        However, till date the anti-Plasmodial role of GST in the 

mosquito vector is not known.  The recent study by Oliveira et 

al, revealed that long proved anti-plasmodial role NOS (Nitric 

Oxide Synthetase) induction is not sufficient to achieve an 

effective anti-plasmodial response [52]. In this context it draws 

our attention towards the protective role of Glutathione S- 

transferase which may have anti-plasmodial role in the mosquito 

vector.  

        As regards the role of GST during developmental stages of 

mosquitoes, it showed that there is a high level of production of 

induced GST in blood fed mosquitoes and during gonadial 

development stages [11]. Taking into account all the above facts, 

it is hypothesized that there might be a strong association 

between the response to Plasmodium infection and insecticide 

resistance, thus enhancing the significance of further studying 

their interactions through the GST pathway. So the following 

possibilities need to be explored: 1) The GST may themselves 

exert irreversible damage to the parasite, which secondarily 

triggers immune recognition and parasite melanization.2) 

Increased level of GST may accelerate immune activation and 

parasite melanization. 3) As GST is a resistant phenotype, it may 

favor the parasite development inside the mosquito vector.  It is 

important to explore the role of differential expression of the 

ROS and GST on the vectorial capacity and competence of the 

mosquito vector. Further study is needed to explore the mosquito 

immune defense mechanism, genetic pathway of vector 

physiology, vectorial capacity and competence. The research will 

ultimately lead to novel measures for malaria control.  
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