
International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 1
ISSN 2250-3153

www.ijsrp.org

A Holistic Presentation and recommendation of
OpenFlow Its Challenges and Future Research Needed

Javier Coto

Abstract- OpenFlow could define flows and determine how
packets are prioritized and forwarded through switches, reduce
power consumption, and redesign data centers. You will find a
holistic research of the current innovations, benefits, and future
researched need in OpenFlow.

Index Terms- OpenFlow, New protocols for OpenFlow, How
DDoS can be reduce through OpenFlow, Reduce datacenter
power consumption through OpenFlow , Improved OpenFlow
scalability with Ca-SDN, Implementing OpenFlow in a Wireless
mesh network

I. INTRODUCTION
penFlow is one of the most important building blocks for
software-defined networking (SDN). OpenFlow moves the

control of the switch like routing to a centralized server, instead
of the switch. With this a network can be programed allowing the
system to be more flexible, and dynamic. With a centralized
controller cloud computing power can be used.
 OpenFlow can also be used to conserve power by turning
off switches and ports off in peak hours, like at night. In data
centers this reduces power consumption directly and indirectly in
regards to cooling. With more demand for data centers and green
computing OpenFlow provides and good solution.
 The current solution to OpenFlow’s issues will be presented
here, many of the proposed solutions still raise more questions
and research is needed. As you will read some solutions
themselves create greater overhead that cancel out some of the
benefits.
This rest of this paper is organized as follows. Section 2 looks at
the Origins and Future of OpenFlow. Section 3 presents Power
Consumption strategies to reduce carbon footprint. Section 4
takes a very important look into scalability. Section 5 explores
the benefits of using the power of the cloud. Section 6 presents
experiment with wireless mesh networks. Implementing and
modifying OpenFlow headers for mobility. Section 7 shows how
optical networks are taking advantage of OpenFlow-based
control. Section 8 discusses the research environment and Tools
to foster new innovations. Section 9 looks at domain-specific
languages for OpenFlow. The final Section 10 uses OpenFlow to
solve detection problems of denial of service attacks (DDoS).

II. ORIGINS AND FUTURE
 The origins of OpenFlow came from Martin Casado, a PhD
student at Stanford University in 2006. Casado developed Ethane
witch would later become OpenFlow.

 2.1 Ethane

 Casado 2006 paper [1] describes ethane as:
 Ethane controls the network by not allowing any
communication between end-hosts without explicit permission. It
imposes this requirement through two main components. The
first is a central Controller containing the global network policy
that determines the fate of all packets. The second component is
a set of Ethane Switches In contrast to the omniscient Controller,
these Switches are simple and dumb. Consisting of a simple flow
table and a secure channel to the Controller
 This idea eventually leads to OpenFlow after joint research
with Stanford and the University of Berkley.

2.2 Open Networking Foundation (ONF)
 In February 2011 the Open Network Foundation was
established, by Google , Facebook and Microsoft. It now
includes many more members, like Cisco, Dell, HP, IBM, and
many more.
 ONF now oversees and retains controls over the
specifications. In April 25, 2013 the latest version 1.3.2 was
released [2].

III. POWER CONSUMPTION
 Large networks are typically provisioned for peak
workloads, but the variation of workload varies greatly by day,
week, or month. At night time the networks load could be 50%
the load during the day [17]. In December the load will be higher
than any other month due to Christmas and online shopping.
 Figure 1 shows peak traffic during the day and night. Even
though the traffic varies significantly with time, the rack, and
aggregation switches associated with the 292 servers hosting an
e-commerce application, the server draws constant power [9].
 Power can be conserved by powering down switch or
individual ports. One approach is Multilayer Traffic Engineering
(MLTE) using adaptive link rates (ALR) and burst mode
operation and another is Elastic tree. These are two ways propose
to reduce power consumption

O

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 2
ISSN 2250-3153

www.ijsrp.org

Fig. 1: Ecommerce website application Bandwidth and watts
graph

3.1 MLTE with adaptive link rates and burst mode operation
 MLTE can lead to power savings of 50% [9] Figure 2
illustrates how MLTE works

Fig. 2: Multilayer traffic Engineering

 Since OpenFlow currently has limited support for the
control of power in the switches adaptive link rates and burst
mode operation are used to reduce power on the device [21].
 Adaptive Link Rates is based on the principle that lower
link rates lead to lower power consumption in the network
equipment. In burst Mode packets are buffered in a network node
and then sent over the link at the maximal rate. In between the
bursts the line can be powered down. This works in a very small
time scale, so the number of links that can be turned off is
limited. This can be implemented by using OpenFlow Header
OFPT_* (featured_request , featured_reply, port_mod,
port_down) or Open flows OFPC_BURST_MODE header [17,
19]

3.2 Elastic Tree
 Elastic tree suggest having router that can be put in sleep
mode to be efficient at low loads. It states it can reduce energy
consumption by 60% when demands are low. Elastic tree uses
open flow to control dynamic routing of flows and measure
traffic matrix [9].

IV. SCALABILITY
 As OpenFlow uses a single controller that is centrally
controlled, naturally question of scalability comes up. Several
concerns related to scalability are: the amount of control traffic
destined towards the centralized controller grows with the
number of switches. If the network has a large diameter, no
matter where the controller is placed, some switches will
encounter long flow setup latencies. Since the system is bounded
by the processing power of the controller, flow setup times can
grow significantly as demand grows with the size of the network
[11]. Cloud-assisted Software-defined Networking (Ca-SDN) can
address the last problem but comes with other scalability issues.
Some proposed solutions addressing scalability as well as other
issues are, HyperFlow, DevoFlow but each has certain
limitations. Another possible solution is Flowvisor. We will look
at the benefits and challenges of each.

4.1 HyperFlow
 HyperFlow is a distributed event-based control plane for
OpenFlow. It is logically centralized but physically distributed,
this gives it the ability to be scalable but retain the benefits of a
centralized controller. HyperFlow does not require any change to
the OpenFlow standard [22].
 HyperFlow is implemented on top of NOX, NOX
controllers will each be running an instance of the HyperFlow
controller application. Each controller will have an event
propagation system for cross-controller communication. Every
controller operates as if it is in control of the entire system [11].
Figure 3 illustrates the High-level Overview of HyperFlow.

Fig. 3 HyperFlow Overview

 HyperFlow’s application uses a publish / subscribe system
to let each controller achieve a constant network-wide view.
Each controller publishes events that change the state of the
system, while other controllers replay all published events to
reconstruct the state.
 HyperFlow uses WheelFS a distributed file system design
[23] to propagate events. As illustrated in figure 3 each controller
subscribes to three channels, the data channel, the control
channel, and its own channel. All controllers can publish or
subscribe to all channels. The data channel has the local network
and applications events. The control channel is use to facilitate
controller discovery and failure detection, each controller will
periodically advertise itself to it. The controllers own channel is
used for events and OpenFlow commands.
 HyperFlow has several limitations. One, with applications
that relies on temporal events, since different controllers perceive
events in different orders. Two applications that query the
switches perform poorly with HyperFlow. An example is
discovery applications, they will need to be modified to use
OpenFlow instead of protocols like LLDP.
 Lastly and must important as regard to scalability. As
HyperFlow uses WheelFS for event propagation. WheelFS has
certain limitations with read speeds; it can read and deserialize
987 files [22]. This limitation can only guarantee abounded
window of inconsistency among controllers, if the network
changes trigger less than 987 events per second.

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 3
ISSN 2250-3153

www.ijsrp.org

 Future research is needed in developing an alternative to the
publish / subscribe system, or modifications to WheelFS.

4.2 DevoFlow
 As disused previously HyperFlow attempts to build on top
of OpenFlow and NOX, without changing the basic premise.
Contraire DevoFlow does not; DevoFlow believes OpenFlow
excessively couples central control and complete visibility [24,
25]. DevoFlow states having full visibility over all flows is not
quite the right goal. It focus instead, is to only have visibility
over significant flows, while reducing the load of the controller.
Its arguments are essentially an analysis of tradeoffs between
centralization and cost; it is designed for simple and cost-
effective hardware implementation.
 DevoFlow introduces two new mechanisms for devolving
control, Rule cloning and local actions. Rule Cloning augments
the “action” past of the OpenFlow wildcard rule with a Boolean
CLONE flag. If flag is clear, standard OpenFlow wildcard
behavior is followed. If not the switch locally clones the wildcard
rule to create new rules. With Local actions rules are augmented
with a small set of possible “local routing actions”. This will be
done without invoking the controller. If the switch does not
support the action only then will you invoke the controller.
 DevoFlow also offers two different ways of collecting
statistics information, sFlow and, Triggers and reports. sFlow
uses sampling of header information at a rate of 1/1000 packets
(this rate can be adjusted). Instead of OpenFlow’s push-based or
pull-based collection strategies. Since sFlow does not include the
entire packet, the incremental load on the network is less than
.1% [25]. An alternative to sFlow is Triggers and reports, this
uses OpenFlow rules to include threshold-based triggers on
counters. The switch only sends the report to the controller when
the threshold is met. Research is still being done as to witch of
the two collection strategies is better, as of now it is unsure.
 DevoFlow uses the mechanisms mentioned above to reduce
the number of flows that interact with the control-plane. By
reducing the flows you enable scalability, greater than with
OpenFlow itself. This does not solve your scalability issues; it
only lets you have a bigger network then with OpenFlow alone.
You still have all the constraints mentioned before. This is
because you are only improving infrastructure for a system with
one controller, as HyperFlow lets you add multiple controllers
and is more scalable.
 A good future research would be to implement HyperFlow
with DevoFlow, expanding the network size of each controller,
without addressing the limitations of WheelFS.

 4.3 FlowVisor
 FlowVisor has been address as a work around for scalability
in OpenFlow [11]. FlowVisor was not specifically designs to
address the scalability issues; it was design to enable multiple
researchers to slice a production network for test bed and lab
research [8]. We will go deeper into this in Section 8.
 FlowVisor enables a way of placing multiple controllers on
one physical network as shown in figure 4. Each controller will
only have a globe view of its own network.
 This is not a good solution is regards to scalability. Yes it
allows you to use more controllers and reduce load but at the cost
of sacrificing the overall goal of OpenFlow.

Fig. 4 FlowVisor network slicing

 4.3 Global view and CA-SDN
 In CA-SDN OpenFlow quires the switches to get a global
view of the dynamic network, creating more packets gathering
the information, and the extra overhead could outweigh the
benefits.
 A workaround has been proposed be putting a proxy
controller that is co-located with the switch [4]. You can also
consider your current topology and select a switch to gather
information in a strategic location. This is still an open question
that should be researched and a concern in regards to scalability

V. USING THE POWER OF THE CLOUD
 We have looked at how Cloud-assisted Software-defined
Networking (Ca-SDN) helps with scalability and its
shortcomings. Now we will look at the other advantages the
cloud computing have for OpenFlow
 There are several advantages one being Flexibility by
functionality only requires a modification of the software
implementation of the controller. In forwarding performances
switches do most of the forwarding in hardware in contrast to the
software routing. Additionally the time for setting up new entries
can be reduced by utilizing the computational resources of the
cloud, ease of administration, and cost reduction (by outsourcing
complex functionality).
 The flexibility and optimization of the disruption tree in Ca-
SDN is excellent. The controller can calculate any kind of tree on
the fly. This is where the real power is, calculating dynamic
routing algorithms. By using the resources of the cloud you have
many more routes that can be calculated compared to an inferior
router or a single controller with finite resources. You now have
the option of calculating thing like minimum spanning trees in
parallel in different cores and can set a deadline for the
calculation to avoid overloading [4].
 CA-SDN uses two routing process reactive routing and
proactive routing. In reactive a time is very critical as no
distribution tree is installed on switch consequently this could
cause the controller to get overloaded. An advantage of this is

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 4
ISSN 2250-3153

www.ijsrp.org

there is not redundant flooding and pruning like in MOSPE
protocols. The distribution tree is calculated only once. The
OpenFlow switches do not need to implement any multicast
routing protocol at all.
 Proactive routing advantage is in reducing the flow table
size in switches. The two disadvantages are one the latency for
the first packet and two the controller may become overloaded if
it takes too long. This is especially true with UDP where packet
will begin to send without a handshake like TCP.

VI. EXPERIMENTING WITH MOBILITY AND OPENFLOW
 Implementing OpenFlow in a Wireless mesh network
(WMN) faces many different obstacles than wired networks. Due
to variations in link qualities and nodes joining and leaving the
network, the network topology changes at a much higher pace
than any wired network [3]. In addition, as wireless networks do
not have the clear notion of a point-to-point link, neighbor and
topology discovery need to be adapted to wireless networks.
Handovers between station also need to be addressed.
 The study of [3] demonstrates how with a few lines of
python code, a reasonable and useful service can be implemented
for WMN.
 Fig. 5 illustrates the Initial association of a wireless laptop
and architecture design.

Fig. 5 Wireless Mesh Network with Openflow

 This design has been shown to work in a small scale. Future
research is needed in developing an algorithm to calculate the
optimal STA/MAP associations and flow paths and evaluate it in
a large scale scenario

VII. OPENFLOW-BASED CONTROL OF AN OPTICAL NETWORK
 Currently optical networks are controlled and managed
through the element management system (EMS) and/ or the
Network management system (NMS) as shown in figure 6 [5].
However this approach does not handle the rapid increase of
dynamic networking traffic. An alternative choice to this has
been developed called generalized multi-protocol label switching
(GMPLS), but most network carriers seem to lack the confidence

in it. OpenFlow has been proposed as a solution and received
extensive attention worldwide. OpenFlow has been viewed as a
positive replacement as illustrated in figure 7 , because of its
centralized control scheme. It is easier to migrate and update
current NMS/EMS architecture, unlike GMPLS.

Fig. 6 NMS/EMS in current optical networks

 To implement OpenFlow in optical network, they first
created OpenFlow-enabled PXC (OF-PXC). PXC is a one of the
devices used to switch high-speed optical switches. OF-PXC
enables the NOX to control the cross-connections by using PXC.
 To enable control of the node and a globe network view,
virtual Ethernet interfaces were introduced to the OpenFlow
switches (veths) [5]. Veths are virtualized from the physical
interfaces of the PXC and each veth exactly corresponds to a
physical interface of the PXC.
 With the above mention methods in place the controller can
effectively control flow in optic networks figure 7 illustrates the
OF-PXC.
 Now we will look at how the light path is setup and
released. For each there are two proposed approaches, for light
path setup, we can use the sequential approach or the delayed
approach. For light path release we can use the active approach
or the passive approach.

Fig. 7 OpenFlow-enabled PXC(OF-PXC)

 The difference between the sequential and delayed approach
is obvious by its name. The delay approach waits for an
appropriate time delay for the successful lightpath in the optic

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 5
ISSN 2250-3153

www.ijsrp.org

domain and then inserts a new flow entry. Where the sequential
approach does not.
 The sequential approach is the most straightforward but
there is no guarantee that the lightpath in the optical domain is
completely provisioned before the flow arrives. As the latency of
the PXC needs to be considered, the delayed approach is
recommended, but can also cause bottleneck with protocols like
UDP.
 With lightpath release the active approach is only applicable
when the amount of data for the arriving traffic is known in
advance. In the passive approach the lightpath is only release
after the NOX receives confirmation that is was received.
 Future research is still needed in restoring lightpath
restoration, and investigating unified OpenFlow-based control
for heterogeneous multi-layer optical switching networks.
OpenFlow and optic networks is still in the early stage compared
to GMPLS, but has very promising expectation and worldwide
support.

VIII. RESEARCH ENVIRONMENT AND TOOLS
 In order to design and test new ideas in OpenFlow. Network
administrators need a way of giving more than one researcher
access at a time. We will again look at FlowVisor as a solution in
carving research slices out of a production network [8]
 After giving you a slice of the network, we will introduce a tool
for finding bugs in OpenFlow

8.1 Carving research slices
 OpenFlow has some limitation from the perspective of
researching and testing, because only one researcher can
innovate on the network at a time [8]. FlowVisor has been
proposed as a way to “slice” the network resources to allow
researchers to use them in parallel. Typically most networks
would be “slice” with VLAN’s, this approach complicates
certain research like IP mobility and of wireless handoffs [3]. As
mentioned in 4.3 FlowVisor has also been used as a workaround
for scalability [11].
 FlowVisor is a transparent virtualization layer between the
OpenFlow switch and the controller. FlowVisor acts as a virtual
controller to the switches and as a network of virtual switches to
the research controller figure 8 and figure 4 illustrate the
architecture.

Fig. 8 FlowVisor architecture

 FlowVisor is intentionally architecturally neutral, it does not
know or make any assumptions about either the switches or the
controller. FlowVisor was setup up this way for three reasons.
One to make it centralized policy enforcement; all traffic passes
through FlowVisor giving it a globe network view. Two
recursive delegation, to allow FlowVisor to cascade instances
and make recursive delegation when it needs to reclaim a subnet.
Three Decouple control and virtualization technologies, this
makes it possible to have advancement in each and
independently, avoiding new forms or changes.

8.2 Testing OpenFlow for Faults (Bugs)
 As Software Defined Networking (SDN) moves the control
plane from the switches to the controller, software needs to be
tested for faults (bugs). Even large corporation that extensively
test software, release version with major bugs that affect and
sometimes shutdown offices. Testing OpenFlow application is
challenging because you are looking for bugs in a large
environment that behavior dynamically.
 A make the problem simple OpenFlow can require
programmers to use domain-specific languages. Most OpenFlow
applications have been written in Java and Python and adaptation
of a domain-specific language will be difficult.

8.2.1 NICE
 A tool has been developed to test OpenFlow application,
NICE (No bugs In Controller Execution [6]. NICE test controller
programs by generating carefully-crafted streams of packets
under many possible event interleaving.
 NICE test application written in Python that works with
NOX platforms. To use the NICE tool a programmer will enter
three thing; One the controller program. Two, the topology to use
with all the switches and host. Lastly what to check for like no
forwarding loops or no black hole. The programmer can also
write his own properties to check. After NICE is done, it will
output the results of the traces. Figure 9 illustrates each step.

Fig. 9 How NICE is setup to use

 NICE is built around two major components, the symbolic
engine and the model checker. The symbolic engine is called by
the model checker when the network model requires the
generation of new packets to inject [27]. The model checker
describes the network topology in terms of clients, switches,
controller and links between them.

8.2.2 OFTEN

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 6
ISSN 2250-3153

www.ijsrp.org

 OpenFlow Testing Environment (OFTEN) is a tool for
systematic testing of integrated OpenFlow networks with the
goal of gaining confidence if controllers and real switches work
together correctly in a deployment-like setting. OFTEN is built
on top of NICE, but extends NICE by enabling communication
between the model checker and real switches [26].
 OFTEN adds necessary glue to synchronize the state used
in NICE with a dual environmental model of the real switches. It
gets the flow tables from the real switches and controls the
timing of events. Than it reports both the testing and real
switches correctness issues and inconsistencies.
 This comes with several challenges; first the switches
should be treated as a black-box. Since the OpenFlow switch is
expected to grow rapidly, testing process should rely on a
common standardized interface to reduce overhead. Second a
corrective definition needs to be defined of the expected behavior
for each test case. This should be defined two fold, one in
network-wide and at a low level to aid in debugging.
 OFTEN approach come with some limitation, since it is
built on NICE the model checking forces sequential executions,
this limits the ability to force high load situation for peak
performance testing. Additional OpenFlow is not design with
testability in mind. By introducing new mechanisms like barrier
request forcing synchronization, standardized interface to get
information about internal state, and something to determine
when packet processing has ended. This is a good starting point
for future research and discussions.

IX. DOMAIN-SPECIFIC PROGRAMING LANGUAGE
 As mentioned in section 8.2, most OpenFlow application is
written in general-purpose languages like Python or java [6].
Tools like NICE and OFTEN [26] have been developed to find
bug in these languages as they are more prone to errors, than
domain-specific languages that prevent certain classes of bug.
One of this domain-specific languages is Frenetic witch is an
extension of Python.

9.1 Frenetic
 Frenetic is a domain-specific language for OpenFlow that
aims to eradicate a large class of programing faults. Frenetic
simplifies the task of programing OpenFlow networks, without
compromising flexibility and efficiency [10].
 Frenetic is based on functional reactive programing (FRP).
By using FRP you do not need to write programs that are event
drive as FRP see every packet.
 Frenetic architecture consists of three pieces illustrated in
figure 10. The Frenetic program witch implements the FRP
operations. The run-time system and the NOX.

Fig. 10 Frenetic Architecture

 Frenetic focuses exclusively on discrete stream. It uses a
push-based strategy that propagates values from input to output
streams. Even though Frenetic sees every packet, it does not send
then to the controller, as this will limit frenetic scalability.
Instead it developed optimizations that capture some common
idioms. The run-time system is the back end that installs and
uninstalls rules and communicates between the switch and the
controller.

X. INTERNET SECURITY AND OPENFLOW
 Flooding-based distributed denial of service attacks (DDoS)
have been difficult for security administrators to detect. Since
packet headers fields are modified to look like normal traffic. So
to tell the difference between a legitimate packet and a useless
one is quite hard. Also with the overwhelming amount of packets
sent in a DDoS, it makes it difficult to analyze each one. These
two factors make detection of DDoS attack problematic.
 The method proposes to detect DDoS attacks using
OpenFlow switch and NOX is divided into three methods placed
within the detection loop of the NOX controller.
 The three modules are the flow collector, the feature
extractor, and the classifier (SOM) (illustrated in figure 11). The
flow collector periodically request flow entries from all flow
tables of the OpenFlow switches. It communicates and transmits
through a secure channel isolated from host connect to the
switch. The feature extractor receives the collected flow from the
flow controller, and extracts certain features important to analyze
DDoS flooding attacks. The classifier analyzes weather the
packet received by the featured extractor of DDoS flooding
attacks or legitimate traffic. If it is legitimate traffic the classifier
send the information to the flow collector to update tables
appropriable, if not the classifier alerts detection of an attack
[16].

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 7
ISSN 2250-3153

www.ijsrp.org

Fig. 11 Detection loop Operation

XI. CONCLUSION
 As this paper shows OpenFlow has been embraced and
implemented in many areas. It has been shown it can be applied
in areas not initially intended for like optic networks and wireless
mesh networks.
 OpenFlow is still in its early stages. It will require further
research but it seems like the future of network will derive from
it. Especially in data centers where its application on large
network, give the best return on investment.
 Its biggest challenge still seems to be scalability. As it is a
centralized approach, HyperFlow and DevoFlow is a good start
but lacks solution adequate enough to implement on a large
network.

XII. FUTURE RESEARCH
 As this paper has covered many topics related to OpenFlow.
I will give a recap of where specifically research is needed by
topic.
 In power consumption reduction, more research is needed in
hardware control of the switches. Sleep state, individual ports
and the switch as a whole, in both powering down and up quicker
and with remote control.
 In Scalability, creating an alternative to HyperFlow’s use of
WheelFS seems very promising. Also as mentioned in the paper,
I feel implement HyperFlow with DevoFlow may be a good
combination.
 In using the Ca-SDN, co-located controllers and addressing
UDP protocol challenges.
 In Wireless Mesh network, developing an algorithm to
calculate the optimal STA/MAP associations and flow paths and
evaluate it in a large scale scenario.
 In Optical Networks, restoring lightpath restoration, and
investigating unified OpenFlow-based control for heterogeneous
multi-layer optical switching networks
 In tools and research environments, implementing features
from NICE and OFTEN into OpenFlow, creating a more testable
design.

 In Domain-Specific Programing Language, I feel if ONF
should pick a standard for all switches. Giving consistency, and
promote open source collaboration.

REFERENCES
[1] M. Casado, Ethane: taking control of the Enterprise, Stanford University,

2006
[2] Open Network Foundation, www.opennetworking.org
[3] P. Delay , OpenFlow for wireless mesh networks, Karlstad Universality ,

2009
[4] F. Durr, Toward cloud-assisted software-defined networking, IPVS Instite

of parallel and distributed systems, 2012
[5] L. Liu, Experimental Validation and performance evalyation of OpenFlow-

based wavelength path control in transparent optical networks, Universaty
of Post and Telecommunications, 2011

[6] M. Canini, A NICE way to test OpenFlow applications, Princeton
university, 2011

[7] S. Das, Packet and circuit network convergence with OpenFlow, Stanford
university, 2010

[8] R. Sherwood , Carving Research slices out of your production Network
with OpenFlow, ACM SIGCOMM, January 2010

[9] B. Heller, Elastic tree: Saving energy in data center networks, Stanford
University, 2009

[10] N. Foster , Frentic: A high-level Language for OpenFlow networks,
Princeton University, 2011

[11] A. Tootoonchian, HyperFlow: A distributed control plane for OpenFlow,
University of Toronto, 2010

[12] N. Gude, NOX: Towards an operating system for network, Stanford
University, ACM SIGCOMM, 2008

[13] www.computerweekly.com/feature/the-history-of-OpenFlow
[14] A. Bianco, OpenFlow switching: Data plane performance, IEEE, 2010
[15] Y. Luo , Accelerating OpenFlow witching with network processors,

University of Massachusetts, 2009
[16] R. Braga, Lighweight DDoS flooding attack detection using

NOX/OpenFlow, Universidade federal do amazonas, 2010
[17] D. Staessens, Software defined networking: meeting carrier grade

requirements, Ghent university- 2008
[18] N.Mckeowen et al Openflow: Enabling innovation in campus networks,

SIGCOMM, April 2008
[19] Open Networking Foundation, OpenFlow Switch Specification version

1.3.2, April 2013.
[20] J. He, Towards robust multi-layer traffic engineering: optimization of

congestion control routing, Princeton University, 2007
[21] B. Nordman et al, reducing the energy consumption of networked devices,

IEEE 802.3 tutorial, 2005
[22] OpenFlow Consortium, OpenFlow switch specifications version 1.1.0,

www.openflow.org/documents , 2011
[23] Stribling, J., wide-area storage for distributed systems with WheelFS,

USENIX Symposium on Networked Systems Design and Implementation,
April 2009

[24] A. Curtis, DevoFlow: Scaling flow management for high-performance
networks, University of Waterloo, 2010

[25] J. Mogul, DevoFlow cost-effective flow management for high performance
enterprise networks, 2010

[26] M. Kuzniar, OFTEN testing OpenFlow Networks, European workshop on
software defines networking, 2012

[27] NICE-OF, code.google.com/p/nice/of

AUTHORS
First Author – Javier Coto – Coto@bellsouth.net – (305) 733-
5858

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 8
ISSN 2250-3153

www.ijsrp.org

http://ijsrp.org/

	A Holistic Presentation and recommendation of OpenFlow Its Challenges and Future Research Needed
	Javier Coto

	I. Introduction
	II. Origins and Future
	III. Power Consumption
	IV. Scalability
	V. Using the Power of the Cloud
	VI. Experimenting with Mobility and OpenFlow
	VII. OpenFlow-based control of an optical network
	VIII. Research Environment and Tools
	IX. Domain-Specific Programing Language
	X. Internet security and OpenFlow
	XI. Conclusion
	XII. Future Research
	References
	Authors

