
 

 

 http://dx.doi.org/10.29322/IJSRP.29.12.2019.  

  

 

  
 

Md. Shamim Hossain Biswas 

Publication Partner: IJSRP INC. 

12/29/2019 

DESIGN A NEW CRYPTOSYSTEM 



Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

                                                                          http://dx.doi.org/10.29322/IJSRP.29.12.2019  

 

 
DESIGN A NEW CRYPTOSYSTEM 

 
M.S.H. Biswas Cryptosystem 

 
 
 
 
 
 
 

Md. Shamim Hossain Biswas 
 
 
 
 
 
 
 
 
 
 

   Publishing Partner: 

  IJSRP Inc. 

  www.ijsrp.org 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                iii 

 

Preface  

Alhamdulillah, all praises to ALLAH (subhanahu wa ta′ala) who gives me the ability to complete this 

research work. I could not have finished my work if Almighty ALLAH did not make it possible.  

I would like to give special thanks to Dr. Touhid Bhuiyan (Heads and Professor, Department of 

Software Engineering, Daffodil International University) who provided opportunity to do this research.  

I am very grateful to Mr. Md. Maruf Hassan for his inspirational advices in cryptography lectures. I 

had motivated to cryptography by his inspiration and contented by reading cryptography. 

I am very grateful to Abu Shamim Aminur Razzaque for his rigorous encouragement and good 

academic advocating.  

I am very grateful to Mr. Md. Khaled Sohel who instructed me to find out research gaps during the 

decision period of my research activities.    

I would like to give thanks to M. Mostafa kamal who is trainer and writer of a number of books on 

English language for helping me during correction time of this research.  

I would like to vote of thanks to Dr. Md. Asraf Ali who gave some important instruction during this 

research.  

I would like to extend my gratitude to my respectful supervisor Dr. Md Mostafijur Rahman. Because, 

he guided me to carry the work and gave me important advice whenever I was in a dilemma. 

All of them have contributed to present suitable atmosphere prevailing at Daffodil International 

University that facilitates me to make research activities. This research would not exist without them. 

They have been a continual source of support and motivation (visible or invisible) and have provided 

me with insightful information from differing points of view. Their excellent guidance, motivation, 

caring, patience provided me with an excellent facilities and environment for doing this research.  

I would like to express my gratitude and happiness to my parents, my beloved wife, brothers and sisters 

for their continued support, inspiration, patience and love. I am very grateful to my family members 

who supported financially to conduct study because without their financial support, love and affection, 

this work could not carry out.  Last but not least, thanks goes to whoever has helped me either directly 

or indirectly in accomplishment of my research. 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                iv 

 

 

Copyright and Trademarks 

 

I hereby declare that this research monograph becomes the property of Md. Shamim Hossain Biswas 

and to be placed at the worldwide database access library for future cryptographic researchers and also 

be available Online.  

 

Md. Shamim Hossain Biswas is the owner of this Monograph and own all copyrights of the Work. 

IJSRP acts as publishing partner and author will remain owner of the content.  

 

Copyright©2020, All Rights Reserved 

 

No part of this Monograph may be reproduced, stored in a retrieval system, or transmitted, in any form 

or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as 

described below, without the permission in writing of the Author & publisher. Copying of content is 

not permitted except for personal and internal use, to the extent permitted by national copyright law, or 

under the terms of a license issued by the national Reproduction Rights Organization. 

  

Trademarks used in this monograph are the property of respective owner and either IJSRP or authors do 

not endorse any of the trademarks used 

 

Author Biography:    Md. Shamim Hossain Biswas 

 

Cell:+8801531262445 

MA in English: Language, Literature, TESOL (North South University) 

MSc in Software Engineering (Daffodil International University) 

BSc in Computer Science & Engineering (Stamford University)  

ORCID: 0000-0002-4595-1470 

shamim44-165@diu.edu.bd 

 

 

 

 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                v 

 

TABLE OF CONTENTS 

 

 Page 

PREFACE     iii 

COPYRIGHT AND TRADEMARKS iv 

TABLE OF CONTENTS v 

LIST OF FIGURES vi 

LIST OF TABLES vi 

LIST OF ABBREBIATION vii 

LIST OF SYMBOLS    ix 

ABSTRRACT xi 

CHAPTER 1 INTRODUCTION      

1.1   Background     1 

1.2   Motivation  of the research  2 

1.3   Problem statements  3 

1.4   Research Questions                                                                        4 

1.5 Research Objectives 4 

1.6  Research Scope 5 

1.7 Thesis Organization 5 

CHAPTER 2 LITERATURE REVIEW      

2.1 Preliminaries  6 

2.2  Michael O. Rabin Cryptosystem 14 

2.2.1    Cipher Variant-1 14 

2.2.2 Cipher Variant-2 15 

2.2.3    Existing Research on Rabin Cipher 21 

2.3      Michael O. Rabin Signature Scheme 49 

2.3.1    Existing Research on Michael O. Rabin Signature Scheme 52 

2.4       Key distribution protocol 59 

2.4.1    Brute-force Attack  60 

1.4  2.4.2     Man-in-middle Attack 60 

CHAPTER 3 RESEARCH METHODOLOGY   

3.1 Description of research methodology  63 

CHAPTER 4  RESULTS & DISCUSSION  

4.1 M.S.H. Biswas cryptosystem 66 

4.1.1 Mathematical proof of M.S.H. Biswas Cryptosystem 67 

4.1.2 Comparison of Michael O. Rabin and M.S.H. Biswas Cryptosystem   72 

 

CHAPTER 5 CONCLUSIONS  

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                vi 

 

 5.1 Conclusion        74 

 5.2 Research Contributions   74 

 5.3 Future Work        74 

REFERENCES        75 

APPENDIX A 80 

APPENDIX B 81 

APPENDIX C 82 

LIST OF PUBLICATIONS 85 

 

 

 

LIST OF FIGURES 

 

NO  Page 

Figure 1.1  Research gaps in Michael O. Rabin Cryptosystem 3 

Figure 1.2 Research scope 4 

Figure 2.1 Tree representation of the 𝒢2 of order 2 × 2 𝑖𝑛 𝑍∗7∗19 10 

Figure 2.2 Liouville function λ(n) = (−1)Ω(n) 13 

Figure 2.3 A general form of sawtooth function for Dedekind Sum 14 

Figure 2.4 The block diagram of the stego-object 35 

 

 

 

LIST OF TABLES 

 

NO  Page 

Table 2.1 The extended Euclidean algorithm 7 

Table 2.2 Mobius function interpretation for 10 positive numbers. 8 

Table 2.3 Alternative Mobius interpretation for 10 positive numbers 9 

Table 2.3 The process of the man-in-the-middle attack 61 

Table 4.1 Key Generation protocol structure 67 

Table 4.2 The comparison between two cryptosystem. 72 

 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                vii 

 

 LIST OF ABBREVIATIONS 

 

ACRONYM  EXPANSION 

AVISPA : Automated validation of Internet Security Protocols and Applications 

IAIK : Institute for Applied Information Processing and Communications 

SWIFT : Society for Worldwide Interbank Financial telecommunication 

ASCII : American standard Code for Information Interchange 

OEIS : The On-Line Encyclopedia of integer sequences 

WIPR : Weizmann-IAIK Public-key for RFID. 

RAMON : Rabin-Montgomery Cryptosystem 

CID : Smart Card Identification Number 

BAN logic : Burrows–Abadi–Needham logic 

RFID : Radio Frequency Identification 

H(m) : Collision resistant hash function 

CRT : Chinese Remainder Theorem 

Crypto : Encryption and  Decryption 

R : Residue or Arbitrary number 

RSA : Rivest, Shamir and Adelman 

ECC : Elliptic curve Cryptography 

PID : Principal of Ideal Domain 

IDi : User Identification Number 

crypto++ : Cryptographic Frame work 

GCD : Greatest Common Divisor 

QNR : Quadratic Non Residuum 

RGB : Read and get the bands 

SDR : Software Defined Radio 

MANET : Mobile Ad Hoc Network 

PNT : prime number theorem 

H. C. William : Hugh Cowie William 

Stego-object : Steganography object 

PUA : Public key of Entity A 

PRb : Private key of Entity B 

UHF : Ultra High Frequency 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                viii 

 

(IDA) : Identifier of Entity A 

QR : Quadratic residue 

Ad Hoc : For this/created 

R.H.S : Right hand side 

Rc : random nonce 

L.H.S : Left hand side 

H- Rabin : Hayder-Rabin 

SK : Session Key 

US : United State 

ek : Encryption 

dk : Decryption 

Vierergruppe : Four Group 

PW : Password 

Mod : Modulus 

Mod : Modulo 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                ix 

 

LIST OF SYMBOLS 

 

                            SYMBOLS         SYMBOLIC MEANINGS 

𝜔(𝑛) : Number of distinct prime divisors of n 

𝐻𝐴𝐶 : Handbook of Applied Cryptograph 

𝒢2 : Mathematical bold script capital G 

𝐻 (𝑚) : Collision resistant hash function 

⨁ : O-plus or exclusive or operation 

⨂ : N-Ary circular times operator 

((𝑥)) : Sawtooth function of period 1. 

𝛺(𝑛) : Number of prime factors of n, 

≡ : Identical to or congruent to 

𝑥 = ∑ 𝑎𝑖𝑀𝑖𝑁𝑖

𝑘

𝑖=1

 :   Chinese Remainder formula 

⊈ : A subset of nor a equal to 

ℜ : Bold Fracture Capital R 

𝜔(𝑛) : Prime Omega Function  

𝜑 : Euler’s totient function  

[
α

π
]

4
 

: Quartic residuosity 

∄ : There does not exist 

ℝ : Rational number set 

≐ : approaches to limit 

                                    (
𝑎

𝑁
)                                       :    Legendre Symbol 

𝑎 +  𝑏𝑖 : Gaussian Integers 

𝜕 : Partial differential 

Ϛ : Greek letter Sigma 

⫮ : Doves not divide 

μ(n : Mobius Function 

Q(ζ2
ℓ
). : cyclotomic fields 

(𝐻,∗) : Homomorphism  

λ(n) : Liouville function, 

                                (
𝑎

𝑝
) (

𝑎

𝑞
)                                     :   Jacobi Symbol 

ℑ : Black capital I 

𝔽  : Finite number 

© : Copyright Sign 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                x 

 

𝔾  : Set of generator 

𝐷(𝑎, 𝑏, 𝑐) = ∑ ((
𝑎𝑐

𝑛
)) ((

𝑏𝑐

𝑛
))

𝑛−1

𝑐 𝑚𝑜𝑑 𝑛=1

 

 

:  Dedekind Sum 

|| : Concatenation 

g
t
 : Primitive Root 

≘ : Corresponds to 

𝔽  : Finite number 

𝜔 : Small Omega 

𝑎|𝑝 : A dived by p 

(G,*) : Set of group 

≕ : Equal colon 

ℚ : Quotient set 

≗ : Ring equal to 

𝛦 : There exist 

𝕫 : Integer set 

𝔽 : Finite set 

[  ] : Reciprocity 

𝛴 : Summation 

ᴝ : Sideways U 

∊ : Element of 

∷ : Proportion 

𝒢 : Capital G 

𝜁 : small zeta 

∴ : Therefore 

∀ : For All 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                xi 

 

ABSTRACT 

 

The cryptography is the art of protecting information by transforming encryption into unreadable 

format called cipher text. Only those who possess a secret key can decipher the message into plaintext.  

Either single or more cryptographic primitives are often used to develop a more complex algorithm 

which is called cryptosystem. Michael O. Rabin Cryptosystem can generate same ciphertext form 

different plaintext as well as multiple plaintext from single cyphertext. There are a number of 

techniques to reveal original plaintext, but none of them can separate similar cyphertext against each 

plaintext generated from modular reduction arithmetic. Another problem is forgery attack on Rabin 

signcryption algorithm and private key derivation. To solve those issues, a new cryptosystem has been 

designed which can efficiently separate similar ciphertext against each plaintext by removing all of the 

problem of Rabin cryptosystem identified in problem statements. The proposed cryptosystem 

comprises five algorithms: Key generation, Encryption, Decryption, Signature generation and 

Signature verification algorithm. To authenticate message, the syncryption algorithm has been 

designed. The proposed cryptosystem  construction based on quadratic residue, quadratic quotient, 

floor function and absolute value counting, Diffie-Hellman key exchange protocol, concept of Michael 

O. Rabin signature algorithm, and probability theorem.  The advantage of proposed crypto intensive 

technique is intended receiver gets only one plain value distinguishing the ciphertext against the 

plaintext by verifying signature of sender. Another advantage is that the sender generate signature using 

encrypted text and intended receiver can retrieve plaintext from signature through signature verification 

system. The proposed crypto technique requires less time complexity and probably secure against man-

in-the-middle attack, chosen plaintext, cyphertext attack and modular squaring attack. The newly 

designed techniques uses random padding system including additional quotient and residuum. In terms 

of signature, Rabin signature is pair but proposed cryptosystem uses 4-tuple signature system.  

Keywords 

Cryptosystem, key distribution protocol, Extended Euclidean Algorithm, Chinese Remainder Theorem, 

Legendre Symbol, Congruence, ASCII- Code, Quadratic reciprocity, Jacobi Symbol, Dedekind sum. 

Group isomorphism, Cipher, Biswas cryptosystem. 
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CHAPTER 1 

   

 

INTRODUCTION 

 

1.1  Background   

The cryptography is the art of practice and study of techniques for secure communication in the presence of third 

parties called adversaries.  It is a branch of cryptology. Cryptology is the scientific study of cryptography, 

cryptanalysis and steganography. The cryptography is the art of protecting valuable information by transforming 

encrypted data into unreadable format that is called cipher text.  Only those who possess a secret key can decipher 

the message into readable format.   Encrypted message can be broken by cryptanalysis that is called code breaking, 

although modern encryption techniques are virtually unbreakable. Cryptography is used to secure data in 

transmission, data storage and user authentication. Cryptography involves creating codes that allow information to 

be kept secret, cryptography converts data into an unreadable format so that an unauthorized user unable to decode 

while transmission. It replaces the handwritten signature to digital signature. Digital signatures are used to credit 

card authentication. Due to having the large number of commercial transactions over the internet, the cryptography 

is the main key in ensuring the security of the transmissions. In general, cryptography plays an important role for 

data confidentiality, data integrity, user authentication and non-repudiation.  The cryptosystem is an implementation 

of cryptographic techniques and their accompanying infrastructure to provide information security services.  More 

complex cryptosystems include electronic cash systems, signcryption system, etc. A sophisticated cryptosystem can 

be derived from a combination of several cryptographic primitives. Cryptosystems are sometimes called 

cryptographic protocol. In physical world, handwritten signatures are used to bind the signatory to the message 

analogously in digital world, the signcryption system is used to bind signatory to the digital message. Actually the 

message signing binds the identity of the message.  It ensures the data integrity, message authentication and non-

repudiation. There are different types of cryptosystems: Asymmetric key cryptosystem, Symmetric key 

cryptosystem, Hybrid cryptosystem, Knapsack cryptosystem, etc. Michael O. Rabin cryptosystem was one of the 

first asymmetric cryptosystem in the field of public key Cryptography. Security of Rabin encryption mechanism 

relies on prime integer factorization. (Rabin, 1976, 1979) proposed a public key cryptosystem and signature 

scheme. Together with encryption, decryption and signature schemes are called Michael O. Rabin cryptosystem. A 

large number of surveys were done on Michael O. Rabin cryptosystem to find out its efficiency and devise a new 

method for real life application. It has huge theoretical significance in cryptography. There are two light weight 

public key cryptosystems: Elliptic Curve Cryptosystem (ECC) and Rabin cryptosystem. Two public key protocol 

based on Rabin cryptosystem are used in implementation Ultra High Frequency (UHF RFID) and Radio Frequency 

Identification Reader (RFID) (Saxl.et.al. 2019).  A slightly modified version of Rabin Cryptosystem (RAMON 
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cryptosystem) was used in implementation of UHF RFID and WIPR (Sensors). The Rabin cryptosystem is used in 

passive radio frequency identification by slightly modification. The encryption mechanism used to quadratic 

residue to produce cipher text and Decryption was accomplished by Computing two square root, Bezout’s 

coefficient using extended Euclidean algorithm and combining them with Chinese Remainder theorem. It was quite 

similar to RSA and ElGamal cryptosystems, Michael O. Rabin cryptosystem considered in ring under addition and 

multiplication modulo composite integer. 

In cryptography, Michael O. Rabin cryptosystem produces four decryption results of which one is correct and other 

three are pseudo results. However, those disadvantages turned into advantage in steganography on the other hand. 

Three illusion message brought benefit to steganography applications. Although, in cryptographic application, those 

three false results considered a weak point in Rabin cryptosystem due to the size problem. The disadvantage of 

Rabin Cryptosystem turned into advantage in steganography field which would be used not only constructing hiding 

map but also authenticated mechanism which guides the hiding process.  The decryption algorithm will give four 

message of which one is secret message and the rest of three are illusion messages with a different length that will 

construct the map of graphical data.  

 

1.2 Motivation of the research  

With the growth of the Internet, encryption came into much wider use to protect credit card and other online 

transactional information. Only in the past decade, encryption has been widely used for ordinary communications 

and stored data because the number of genius hacking techniques is noticeably increasing day by day. Robbery in 

Bangladesh bank, for example, took place on (Editor, 2016), when thirty five fraudulent instructions were issued by 

security hacker via the SWIFT (Society for Worldwide Interbank Financial Telecommunication) inter-bank 

messaging system to illegally transfer to US. The attack resulted in the theft of $101 million of which $81 million 

remain missing. If we have had crypto-intensive technology, this type hacking robbery could not have taken place. 

This is not only Bangladeshi cyberspace problem but also worldwide developing countries’ cyber problem, 

although, the challenge of designing practical and secure encryption system is magnified by the fact that the 

encryption algorithms and protocols are notoriously fragile. Cryptosystem is the most effective way to achieve data 

security. So thinking about aforesaid security and privacy issues in cyberspace, I devoted myself to continue study 

on Cryptography to ensure confidentiality and security in communication. In fact, security and privacy issues are 

entirely two different beasts in information communication system. Since cryptography is a domain of computer and 

information security which is an evolving discipline that involves the study of technology, strategy, policies and 

standards regarding the security of and operations in cyberspace, it refers to secure information and communication 

techniques derived from mathematical concepts and set of rule based calculations called algorithms which 

transforms message in a ways that are hard to decipher. For those aforesaid reasons, I have been motivated in 

applied cryptography subject which is a branch of cryptology.   
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1.3 Problem Statement (Research Gaps) 

To find out research gap is mandatory to do research and for that reasons literature reviews are necessary. Research 

gap analysis is also conducted through literature review in order to see how the proposed research methodology 

would fill in the gap in the research area.  Michael O. Rabin Cryptosystem was not widely used because of having 

some computational error during encryption and decryption produced by modular arithmetic but its theoretical 

significance is widespread. However, RAMON cryptosystem is used in RFID reader. It was implemented based on 

Rabin cryptosystem.  On the other hand, Rabin signature is vulnerable in forgery attack. One of the main 

disadvantages is to generate four results during decryption and extra effort needed to sort the right one out of four 

possibilities. Recently, many rigorous articles about Rabin cryptosystem have been published in different journals 

and conferences by researchers. A number of problem and ambiguity was noticed in Michael O. Rabin 

Cryptosystem during literature review and formulated in following steps.   

Issue-1: Rabin Encryption and Decryption system generates same cipher text from different plaintext for example, 

two random private key P=7, Q=11, public key N=P*Q=7*11=77. M = {13, 20, 57, 64} four plaintext produce same 

cypher(c) = M
2 

  mod 77=15 and the same way it produces multiple plaintext from single cipher text during 

decryption. There is no algorithm to identify similar quadratic residue generated from distinct input in Michael O. 

Rabin Cryptosystem, the following example may be efficient for cryptographic readers. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Research gaps in Michael O. Rabin Cryptosystem 

C= 13
2
 mod 77 C= 20

2
 mod 77 C= 57

2
 mod 77 C= 64

2
 mod 77 

 

 

 

The same encryption result (15) generates from four distinct plaintext M= {13, 20, 57, and 

64} those results cannot be identified separately by Michael O. Rabin’s Cryptosystem.   

64 13 20 57 

As we can see that these are confusing and inconsistency in Michael O. Rabin Cryptosystem.  

C = 15 

C = 15 
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Issue-2: Private Key can be obtained through combination of two modular exponentiations, Chinese Remainder 

Theorem and Extended Euclidean algorithm. For example, apply GCD (|r-s|, N) where r and s are two roots. For 

example, GCD (57-13, 77) = GCD (44, 77) =11 which is Q and P=N/Q=77/11=7. 

Issue-3: The decryption of Rabin’s Cryptosystem is non deterministic. 

Issue-4: Rabin’s signature scheme is vulnerable to forgery attacks. It is relatively easy to compute S
2 

modulo N by 

choosing any message 𝑚′ and compute multiplicative inverse of 𝑚′ (hash value of m) and then calculate  𝑈′ =  𝑆2 ∗

 𝑚′−1 𝑚𝑜𝑑 𝑁 and forge the signature as (𝑚′−1, 𝑈′, 𝑠) without knowing the factorization of N. Assuming two Blum 

primes are p = 7, q = 11. Public key N = p. q = 77, m = 20, m′ = m2 = 202 mod 77 = 15 is hash value. Taking 

two values U =  25 and x = 12 arbitrarily for which the equation 122 mod 77 = ( 15 ∗ 25) mod 77 is true. Hence, 

the signature {15, 25 and 12} and the forgery signature {36, 25 and 12}, where 36 is multiplicative inverse of 15. 

Where U′  =  x2. m′−1
mod N = 122. 36 mod 77 = 25 where Multiplicative inverse (m′−1

) =  36. The forgery 

attacker forges the signature as  (m′−1
, U′, x).   Since the U = U′,   s = x2 mod N and m′−1

 the multiplicative 

inverse of m′.So the signature is valid mathematically and forgery attacker become successful to achieve signature. 

1.4 Research Questions 

The research questions have already been mentioned in problem statements, even after presenting research 

questions more precisely for entire future cryptographic reader, the following question may be ideal for them.  

 How one can separate similar quadratic residue generated from different input in Michael O. Rabin 

cryptosystem?     

1.5 Research Objectives 

 To solve similar quadratic residue identification problem of Rabin cryptosystem. 

 To design a new cryptosystem.  

 To solve modular crashing attack on Michael O. Rabin Cryptosystem. 

 To counteract forgery attack on Rabin’s syncryption algorithm.  
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1.6 Research Scope  

The research scope is limited to design a new cryptosystem to overcome the constraints of Michael O. Rabin 

Cryptosystem.  The process of designing technique is as follows.  

Planning and prioritization 

          Analysis and design 

Figure1.2: Research scope 

                              Mathematical proof for testing and finalization  

                                      Ultimate result for publication 

In the planning and prioritizing phase, Research gaps finding (mission statement) and decision taking (selection of 

vision statement) are main concern of research. Analyzing and design phase ensure designing of cryptosystem in 

particular, how desired problem’s solution will be implemented using different methodology. Mathematical 

experiment for testing and finalization ensures whether proposed techniques result in correct answer? 

 

1.7 Thesis Organization 

 

The road map of this research has been organized in the following ways.  

 

Chapter 1 briefly introduced the research background and some primary knowledge about Michael O. Rabin 

Cryptosystem. The problem statements (research gaps), research objective and research scope are introduced in this 

chapter. The rest of the research is organized as follows.    

 

Chapter 2 consists of literature review and preliminaries related to Michael O. Rabin Cryptosystem.  

 

Chapter 3 describes research methodology which indicates how I performed my research activities.  

 

Chapter 4 presents the author contribution and detail descriptions of research outcome has been given. A comparison 

between newly designed cryptosystem and Michael O. Rabin cryptosystem has also been demonstrated.  

 

Finally, Chapter 5 gives conclusion and future work for potential innovative reader.   
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2. 1 Preliminaries  

The Euclidean algorithm is used to finds the greatest common divisor (GCD) of two numbers a, b ∈ N. It essential 

for Michael O. Rabin cryptosystem.  The algorithm is as follows.  

 First initialize the 𝑟0 =  𝑎, 𝑟1 = 𝑏 

 Now compute the following sequence of steps: 

    𝑟0 =  𝑞1 ∗ 𝑟1 + 𝑟2, 

     𝑟1 =  𝑞2 ∗ 𝑟2  +  𝑟3, 

     𝑟𝑛−3 =  𝑞𝑛−2 ∗ 𝑟𝑛−2 +  𝑟𝑛−1                    

                    𝑟 = 𝑞𝑛−1 ∗  𝑟𝑛−1 + 𝑟𝑛 Continue this process until there is a step for    

                     which  𝑟𝑛 = 0 while  𝑟𝑛−1 ≠  0. 

 The greatest common divisor is equal to 𝑟𝑛−1. 

The extension of above algorithm is called extended Euclidean algorithm which is useful in the finite field and in 

encryption algorithm. The Extended Euclidean algorithm not only calculates the gcd but also two additional integers 

x and y that satisfy the equation. 𝑎 ∗ 𝑥 +  𝑏 ∗ 𝑦 = 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑. It is clearly appears opposite sign of x and y after 

examining algorithm. The extended Euclidean algorithm (Table 2.1) which determines x, y, d from given a and b 

where a ≥ b ≥ 0. (Stallings, 2016).  

 

 

 

 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                                                7 

            

Table 2.1: The extended Euclidean algorithm 

Initial  Extension 

Calculates division 𝑥−1 = 1,   𝑦−1 = 0 𝑎 =  𝑎 ∗ 𝑥−1 +  𝑏 ∗ 𝑦−1 

𝑟−1 =  𝑎,  𝑟0 = 𝑏  𝑥0 = 0,   𝑦0 = 1 𝑏 =  𝑎 ∗ 𝑥0  +  𝑏 ∗ 𝑦0 

𝑟1 =  𝑎 𝑚𝑜𝑑 𝑏 

q1 = ⌊
𝑎

𝑏
⌋ 

 

𝑎 =  𝑏 ∗ 𝑞1  + 𝑟1 𝑥1 = 𝑥−1 – 𝑞1 ∗ 𝑥0  = 1 
𝑦1 = 𝑦−1 – 𝑞1 ∗ 𝑦0

= −𝑞1 

𝑟1  =  𝑎 ∗ 𝑥1  +  𝑏 ∗ 𝑦1 

𝑟2 =  𝑏 𝑚𝑜𝑑 𝑟1 

q1 = ⌊
𝑏

𝑟1

⌋ 

 

𝑏 = 𝑟1 ∗ 𝑞2  +  𝑟2 𝑥2 =  𝑥0 –  𝑞2 ∗ 𝑥1 
𝑦2 = 𝑦0 – 𝑞2 ∗ 𝑦1  

𝑟2  =  𝑎 ∗ 𝑥2  +  𝑏 ∗ 𝑦2 

𝑟3 =  𝑟1 𝑚𝑜𝑑 𝑟2 

𝑞3 = ⌊
𝑟1

𝑟2

⌋  

𝑟1 = 𝑟2𝑞3  + 𝑟3 𝑥3 =  𝑥1 – 𝑞3 ∗ 𝑥2 
𝑦3 = 𝑦1 – 𝑞3 ∗ 𝑦2  

𝑟3 =  𝑎 ∗ 𝑥3 +  𝑏 ∗ 𝑦3 

: 
: 

: 
: 

: 
: 

: 
: 

𝑟𝑛  =   𝑟𝑛−2 𝑚𝑜𝑑  𝑟𝑛−1 
 

q𝑛 = ⌊
𝑟𝑛−2

𝑟𝑛−1

⌋ 

 

𝑟𝑛−2 =  𝑞𝑛 ∗ 𝑟𝑛−1  
+  𝑟𝑛 

 
 

𝑥𝑛 =  𝑥𝑛−2 – 𝑞𝑛 ∗ 𝑥𝑛−1 
𝑦𝑛 = 𝑦𝑛−2 –  𝑞𝑛 ∗ 𝑦𝑛−1 

𝑟𝑛 = 𝑎 ∗ 𝑥𝑛 +  𝑏 ∗ 𝑦𝑛 

𝑟𝑛+1 =  𝑟𝑛−1 𝑚𝑜𝑑 𝑟𝑛     = 0
 

qn+1 = ⌊
𝑟𝑛−1

𝑟𝑛

⌋ 

 

𝑟𝑛−1 =  𝑞𝑛 +1 ∗ 𝑟𝑛 + 0  𝑑 =  𝑔𝑐𝑑(𝑎, 𝑏)   =  𝑟𝑛  

𝑥 = 𝑥𝑛 , 𝑦 = 𝑦𝑛  

 

Bezout′s Identity (Bezout, 1779) is a GCD related theorem which is valid for every principal ideal domain. A pair 

of Bezout′s coefficients can be computed by the extended Euclidean Algorithm. Modular arithmetic deals with 

whole numbers where numbers are replaced by their remainders after division by a fixed number in a modular 

arithmetic. Modular division is defined when modular inverse of the divisor exists. There are number of rules in 

modular arithmetic which is efficient in scientific experiment. Modular arithmetic is a system of arithmetic for 

integers, where values reset to zero and begin to increase again, after reaching a certain predefined value, called the 

modulus (modulo). Modular arithmetic is widely used in computer science and cryptography.  The clear description 

of modular arithmetic can be found in (Gauss, et.al., 1965). The Chinese remainder theorem (CRT) is essential for 

Michael O. Rabin cryptosystem. The CRT asserts that composite number N is pairwise coprime  for that the system 

of congruence x ≡  a1 (mod N1),  x ≡  a2 (mod N2) where N1, N2 are coprime. Bezout’s identity asserts the 

existence of two integers m1  and m2 such that 𝑚1𝑁1  +  𝑚2𝑁2  =  1. The formula of CRT is as follows.  

∑ 𝑎𝑖𝑀𝑖𝑁𝑖

𝑘

𝑖=1

… … … … … … … … … … … … … … … … … … … … … … … . 𝐸𝑞𝑢. (1) 

The details about Equ.(1) can be found in (Katz,et.al.,1998). 

The polynomial is an expression consisting of variables and coefficient. It involves addition, subtraction, 

multiplication operations and non-negative integer exponential variables. The novel polynomial equation is as 

follows 

http://dx.doi.org/10.29322/IJSRP.29.12.2019
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𝑎𝑛 𝑥𝑛  + 𝑎𝑛−1𝑥𝑛−1. . . . . 𝑎2𝑥2  +  𝑎1𝑥1 +  𝑎0𝑥0 … … … … … … … … … . . … 𝐸qu. (2) 

Equ.(2) can be expressed more precisely by using summation notation is as follows.  

∑ 𝑎𝑘𝑥𝑘

𝑛

𝑘=0

… … … … … … … … … … … … … … … … … … … … … … … . . … . 𝐸𝑞𝑢. (3) 

For more details about Equ.(3), see (Manuel,et.al,2006).  The Legendary symbol is a number theoretic function  (
𝑎

𝑝
) 

which is defined to be equal to ±1 depending on whether 𝛼 remains quadratic residue modulo p. The definition of 

Legendre symbol is as follows.     

(
𝑎

𝑝
) =  𝑎|𝑝 ={

  0     𝑖𝑓  𝑝|𝑎                                                                   
 1    𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝     

−1   𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑛𝑜𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝
… … … . . 𝐸𝑞𝑢. (4) 

If p is an odd prime, the Jacobi symbol reduces to the Legendre symbol. The Legendre symbols obey the following 

identity   

                       (
𝑎𝑏

𝑝
) = (

𝑎

𝑝
) (

𝑏

𝑝
)……………………………………………………………𝐸𝑞𝑢. (5) 

In general,  (
𝑎

𝑝
) = 𝑎

𝑝−1

2   (𝑚𝑜𝑑 𝑝) if  is an odd prime. For more details, see (Jones, et.al., 1998).  The ASCII 

characters are associated to an integer value for each symbol, letters, digits, punctuation marks, special characters 

and control characters. It is essential for communication system.  The ASCII table (Karen, et.al. 2012) is presented 

in “Appendix A”. In mathematics and computer science, the floor function takes input x and gives output as an 

integer which less than or equal to x. The details about this can be found in (Knuth, et.al., 1988). Mobius function 

was introduce by the German mathematician August Ferdinand Mobius in 1832.  It has many application in 

computer Science. For any positive integer n, define μ(n) as the sum of the primitive n-th roots of unity. It has values 

in {−1, 0, 𝑎𝑛𝑑 1} depending on the factorization of n into prime factors:  

 𝜇(𝑛)  =  1 If n is a square-free positive integer with an even number of prime factors. 

 𝜇(𝑛) =  −1  If n is a square-free positive integer with an odd number of prime factors. 

 𝜇(𝑛)  =  0 If n has a exponential prime factor.  For example, the Table 2.2 shows Mobius 

functionality is as follows. 

                                         Table 2.2: Mobius function interpretation for 10 positive numbers. 

 

 

 

n 1 2 3 4 5 6 7 8 9 10 

μ(n) 1 1 −1 0 −1 -1 −1 0 0 -1 
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The Mobius function can alternatively be represented as  μ(n) = δω(n)

Ω(n)
 where  𝛿 is the Kronecker delta, λ(n) is the 

Liouville function, 𝜔(𝑛) is the number of distinct prime divisors of n, and 𝛺(𝑛) is the number of prime factors of n, 

counted with multiplicity. 

                        Table 2.3: shows an alternative form of Mobius interpretation for 10 positive numbers. 

 

 

 

The Mobius function can be expressed by ∑ 𝜇(𝑑)

𝑑|𝑛

… … … … … … … … … . 𝐸𝑞𝑢 (6) 

For more details about 𝐸𝑞𝑢 (6), see (Hardy,et.al.,1990, Klimov, 2001). The radio frequency identification (RFID) 

devices have been recently introduced in several applications and services as National Identification Cards, 

Passports, credit cards, etc. A passive radio frequency identification (RFID) reader for two dimensional localization 

of tagged objects in the ultra-high frequency. A software defined radio (SDR) system for measurements of minimum 

activation power and backscatter power of ultra-high frequency reader (UHF RFID). A device conducting RFID 

eavesdropping using software defined radio platform (SDRP). A classical RF attacks can be made on long range 

transmission protocols, however we extend the standard RF attacks to cover RFID communication protocols. For 

more clarification, see (Alex,et.al., 2014).The Jacobi symbol (
𝑎

𝑁
) = (

𝑎

𝑛1
) (

𝑎

𝑛2
) is the quadratic residuosity, it was 

used to distinguish the roots in the Rabin cryptosystem, when 𝑝 ≡  𝑞 ≡  3 𝑚𝑜𝑑 4. For primes congruent to 1 

modulo 4, The Legendre symbols cannot distinguish numbers of opposite sign, therefore quadratic residuosity is no 

longer sufficient to identify the roots. Higher power residue symbols could be efficient for desired job, but 

unfortunately their use is not straight forward and analogous reciprocity laws or multiplicative properties are not 

always at hand.  Higher power residues have been used in some generalizations of the Rabin scheme working in 

residue rings modulo non-prime ideals of algebraic number fields. For instance, residue rings in Eisenstein or Gauss 

fields were considered and Rabin-like schemes based on encryption rules involving powers of the message higher 

than 2 were introduced. This approach does not address the problem of separating the roots of a quadratic equation 

in the classic Rabin scheme.  Therefore, it is necessary to look at different kinds of higher order residuosity which 

should allow a reciprocity law, a finite group which does not reveal any information allowing the factorization of N. 

An idea is to multiply the exponent and consider the function which would identify message among the roots of 

unity in Z*N. This idea would be to make these roots publicly available and label them so that the sender of the 

message can tell which of them corresponds to the message actually sent. But it is necessary to masking by 

multiplying odd number in order to hide the factors N and most importantly we would find the square roots among 

the root of unity. The multiplicative group Z*N which is direct product of two cyclic group   Ҽ𝑝−1  𝑎𝑛𝑑 Ҽ𝑞−1 , can 

also be viewed as the direct product of two abelian subgroups, namely 𝒢2 and a group of odd order that is  

 

n 1 2 3 4 5 6 7 8 9 10 

𝜇(𝑛) = (−1)𝛺(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟) 1 -1 −1 0 −1 1 −1 0 0 1 
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Z∗N  = (Ҽ2
𝑘  × Ҽ2

ℎ)  × ( Ҽ2𝑓𝑝+1
𝑘  × Ҽ2𝑓𝑞+1

ℎ ). Therefore, every element ⍺ of Z∗N can be written as a product. 

Vierergruppe is a group with four elements in which each element is self-inverse. It is non cyclic group. It is 

however an abelian group and isomorphic to the dihedral group of order 4. This group consists of three elements and 

an identity element. For example, four roots can be presented as V4= {1, -1, 𝜓 , 𝜓 }. This theoretical phenomenon 

would be clearer by following tree representation of correct root identification.  

 

 Path  

Terminal node 

 

 

Number of node 

                    Root                                                          

  

 

 

 

              

1 -1 20 -20 

 

Root of unity  

 

 

 

Multiplicative pair of prime 

integer  set 

Figure 2. 1: Tree representation of the 𝒢2 of order 2 × 2 𝑖𝑛 𝑍∗7∗19 

 

For more details, seee (Takagi, et.al., 1997, Frohlich, et.al., 1994, Ireland, et.al., 1998, Lemmermeyer, 2000). In 

group theory, two groups are said to be isomorphic if there exists a bijective homomorphism. Group isomorphism 

theorem known as the homomorphism theorem. In this research activities, a practical method have been described in 

context of Michael O. Rabin cryptosystem working with any pair of primes that can have acceptable complexity, 

although it requires a one-way function that might be weaker than factoring. The public key consists of the two 

function. At the encryption stage both are evaluated at the same argument, the message m and the minimum 

information necessary to distinguish their values is delivered together with the encrypted message.  The decryption 

operations are obvious. The true limitation of this scheme is that function must be a one-way function, otherwise 

two square roots that allow us to factor N can be recovered as in the residuosity subsection. For more details, see 

(Wikipedia). The Dedekind sums were introduced by Richard Dedekind. It is denoted by D (a, b, c) and the classical 

Dedekind sum was denoted by.  

𝐷(𝑎, 𝑏, 𝑐) = ∑ ((
𝑎𝑐

𝑛
)) ((

𝑏𝑐

𝑛
))

𝑛−1

𝑐 𝑚𝑜𝑑 𝑛=1

… … … … … … … … … … … … … 𝐸𝑞𝑢. (7) 
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The terms on the right of Equ.(7) being the Dedekind sum. For the case a=1, one  often writes 𝑆 (𝑏, 𝑐)  =  𝐷(1, 𝑏; 𝑐). 

Let C, N be relatively prime and N ≥ 1, then we set the methods of computation based only on the residue theorem 

from complex analysis.  In mathematics, Dedekind sum are certain sums of products of a sawtooth function, and  

are given by a function D of three integer variables. Dedekind introduced them to express the functional equation of 

the Dedekind eta function. The well-known classical Dedekind sum is as follows.  

S(b, c) = ∑ ((
𝑐

𝑛
)) ((

𝑏𝑐

𝑛
))

𝑛−1

𝑐 𝑚𝑜𝑑 𝑛=1

… … … … . 𝐸𝑞𝑢. (8) positive integers or coprime  

and the sawtooth function is as follows. 

((𝑥)) ∶= {
 (𝑥) − ⌊𝑥⌋ −

1

2
    𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.

             
    0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

… … … … 𝐸𝑞𝑢. (9) 

The symbol ((x)), denotes the well-known Sawtooth function of period 1. 

The Dedekind sum satisfies different properties but here only few of them has been shown because of a number of 

author used Dedekind sum to solve Michael O. Rabin cryptosystem which will be clarified at the end stage of 

literature review, 

 c1 = c2 mod n ⇒ S(c1,n) = S(c2,n)………………..……….Equ.(10) 

 S (−c, n) = − S (c, n)………………………..………Equ.(11)   

 S (c, n) + S (n, c) = −
1

4
  + 

1

12
  (

𝑐

𝑛
  +

1

𝑐𝑛
  +

𝑛

𝑐
) ………Equ (12) 

 Equ.(10) to Equ.(12) known as the reciprocity theorem for Dedekind sums 

12𝑛 𝑆 (𝑐, 𝑛)  =  𝑛 +  1 −  2 (
𝑐

𝑛
 ) 𝑚𝑜𝑑 8  ………..Equ (13) 

Equ.(13) for odd number n, this property connecting Dedekind sums and Jacobi symbols. The first three properties 

allow us to compute a Dedekind sum by a method that mimics the Euclidean algorithm and has the same efficiency. 

In the sequel, we need the following Lemma, If n =1 mod 4, for any c relatively prime with n, the denominator of 

S(c, n) is odd. In the definition of S(c, n) we can limit the summation to 𝑛 − 1  because ((
𝑛

𝑛
)) = 0 , furthermore, 

from the identity ((−𝑥)) = −((𝑥)) it follows that  

∑ ((
bc

n
)) = 0 for every integer c, so  we may write the following  formula 

n−1

b=1
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𝑆(𝑐, 𝑛) = ∑ (
𝑏

 𝑛
−

1

2
) (

𝑏𝑐

𝑛
 − ⌊

𝑏𝑐

𝑛
⌋ −

1

2
 )

𝑛−1

𝑏=1

= ∑
𝑏

𝑛
(

𝑏𝑐

𝑛
 − ⌊

𝑏𝑐

𝑛
⌋ −

1

2
 )

𝑛−1

𝑏=1

… … . 𝐸𝑞𝑢(14) 

Since ((
𝑏𝑐

𝑛
)) is never 0, because b < n and c is relatively prime with n by hypothesis. Equ(14) can be split into two 

further summations is as follows.  

∑
𝑏

𝑛
(

𝑏𝑐

𝑛
 − ⌊

𝑏𝑐

𝑛
⌋ )

𝑛−1

𝑏=1

… … … … … 𝐸𝑞𝑢(15) and its denominator patently odd 

− 
1

2
∑

𝑏

𝑛
= − 

𝑛 − 1

4

𝑛−1

𝑏=1

… … . . 𝐸𝑞𝑢. (16)  

For more details. See (Choi, et.al., 2018, Grosswald, 2009). The Dirichlet theorem was invented by John Peter 

Gustav who was a German mathematician who contributed to number theory, Fourier series and mathematical 

analysis. In number theory, Direclet’s theorem is called Direclet prime number theorem which states that for any two 

positive coprime integers a and d. There are infinitely many primes formation. The lists several arithmetic 

progression with infinitely many primes are shown in “Appendix B” which is collected from OEIS number 

sequence. A prime number is a natural number greater than 1 that cannot be formed by multiplying two smaller 

natural numbers. Stronger forms of Dirichlet′s theorem state that any arithmetic progression the sum of the 

reciprocals of the prime numbers in the progression diverges and different such arithmetic progressions with the 

same modulus have approximately the same proportions of primes. The strong form of Dirichlet's theorem implies a 

divergent series that is an infinite series. It is not convergent. It means that the infinite sequence of the partial sum 

series does not have a finite limit. For more details see (Vari, 2014).  The forking lemma is any number related 

lemma in cryptographic research. This concept was first used by David Pointcheval and Jacques Stern in "Security 

proofs for signature schemes," published at Eurocrypt in 1996. The forking lemma is specified in terms of an 

adversary that attacks a digital signature scheme instantiated in the random oracle model. They show that if an 

adversary can forge a signature with non-negligible probability, there is a non-negligible probability that the same 

adversary with the same random tape can create a second forgery in an attack with a different random oracle. The 

forking lemma was later generalized by Milir Bellare and Gregory Neven. The forking lemma has been used to 

prove the security of a variety of digital signature schemes and other random-oracle based cryptographic 

constructions. The forking lemma is actually helping theorem which meaning anything is received, such as a gift, 

profit, or a bribe, Lemma’s sole purpose to help in proving a theorem or your creative mathematical statements. For 

many signature schemes, having two signatures using the same randomness for two different hash values allows 

recovery of the private key. This is used in many security proofs by showing that an adversary that forges a valid 

signature can be coerced through replaying into producing two signatures of this form. As a consequence, a forgeries 

can be twisted into a key recovery attack. The technical question is how can we make sure that the forger is going to 

comply to our expectations and really forge two signatures for the same randomness. Indeed, in general, nothing  
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forces the adversary to use its randomness in a simple way. In particular, giving him the same coins and forcing 

changes the messages is not going to achieve the desired goal, because the adversary is allowed to mix the messages 

themselves into the randomness used for signing. The key idea is to restart the adversary with the same randomness, 

let it run without change until it generates the message M0 that was signed in the first run together with its 

randomness and then force a change on the rest of the run. At this point, in a practical setting, we could imagine 

using a fault attack on the hash function. However, in a theoretical model, the change is achieved by changing the 

responses of the random oracle that models the hash function on the first query that involves M0 and all subsequent 

queries. When we do that, we already know the behavior of the adversary until M0 is generated and hope that it will 

forge again on M0 with the same randomness but a different hash value. This is where the forking lemma comes into 

play. It is a technical lemma that analyzes the behavior of an adversary that receives some random values and 

outputs a pair of values. The result of the forking lemma is that the probability of getting two related runs with the 

same value. More precisely, the forking lemma makes it possible to give two different random signatures of the 

same message, to solve some underlying hard problem. A nice proof was given by Bellare and Neven is not too hard 

to follow. For more details about forking lemma, see (Bellare,et.al., 2006) . The Liouville function denoted by λ(n) 

and named after Joseph Liouville who was a French mathematician. It is an important function in number theory and 

cryptography. If n is a positive integer, λ(n) is defined as λ(n) = (−1) Ω(n) where Ω(n) is the number of prime 

factors of n and counted with multiplicity. 

 

Figure 2.2: Liouville function λ(n) = (−1)Ω(n) 

 LiouvilleLambda(n) gives the λ(n) = μ(n) = μ2(n)(−1)Ω(n) where λ is completely multiplicative since Ω(n) is 

completely additive, 𝑖. 𝑒. : 𝛺(𝑎𝑏)  =  𝛺(𝑎)  +  𝛺(𝑏). The number 1 has no prime factors, so Ω(1) = 0 and therefore 

λ(1) = 1. For example, LiouvilleLambda(20) =  −1. For the details about figure 2.2, have a look (Peter,et.al., 2013, 

Drane,et.al., 2012). The Sawtooth shaped like the teeth of a saw with alternate steep and gentle slopes. It uses for 

signal design and wireless communication. The convention of sawtooth wave ramps upward and then sharply 

drops. In the reverse saw-tooth wave, the wave ramps downward and then sharply rise. The following figure is 

represented to clarify the sawtooth function.  
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Figure 2.3: A general form of sawtooth function for Dedekind Sum 

It is considered for an asymmetric triangle wave. The sawtooth waves are used for music. But in cryptography, we 

are just concern about general idea of sawtooth function which was used in Dedekind Sum, because real message 

can be retrieved using one of the properties of Dedekind sum. Rabin cryptosystem can be implemented by Dedekind 

sum. The product of sawtooth function is used in Dedekind sum. For more details, have a look (Rademacher, et. al., 

1972). 

 

2.2 Michael O. Rabin Cryptosystem  

Michael O. Rabin cryptosystem is an asymmetric cryptographic technique. The following encryption and 

decryption algorithm is enlisted from (Menzes, et.al., 1997).  It uses 4k+3 prime formation where 

K=0……………N-1. There are different variant of Rabin cipher which has illustrated bellow.  

 

2.2.1 Cipher Variant-1 

   Algorithm for key generation:  

Each entity creates a public key and a corresponding private key. The entity A should do the following: 

 Generate two large random and distinct primes p and q, each roughly the same size. 

 Compute 𝑛 =  𝑝 ∗ 𝑞. 

 A’s public key is n; A’s private key is (𝑝, 𝑞). 

Algorithm for Encryption: 

B encrypts a message m for A, B should obtain A’s authentic public key n. then it represents the message as an 

integer m in the range of {0,1…. n− 1}. It computes c =  m2 modulo n and sends the ciphertext (c) to A. 

Algorithm for Decryption: 
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An entity A finds the four square roots m1, m2, m3 and m4 of c modulo n. the sending message was either m1, m2, m3 

or m4. A decides which one of them is desired plaintext by ascertaining replicated bits. The computation steps are as 

follows.  

Step-1: Use the extended Euclidean algorithm to find integers Y𝑝  and  Y𝑞  satisfying    𝑝. 𝑌𝑝  + 𝑞. 𝑌𝑞  = 1.  

Step-2: Compute 𝑀𝑝 =  𝑐
(𝑝+1)

4   𝑚𝑜𝑑 𝑝. 

Step-3: Compute  𝑀𝑞 =  𝑐
(𝑞+1)

4   𝑚𝑜𝑑 𝑞. 

Step-4: Compute 𝑥 =  (𝑌𝑝 ∗ 𝑝 ∗  𝑀𝑞  +  𝑌𝑞 ∗ 𝑞 ∗  𝑀𝑝) 𝑚𝑜𝑑 𝑛. 

Step-5: Compute 𝑦 =  (𝑌𝑝 ∗ 𝑝 ∗  𝑀𝑞 –  𝑌𝑞 ∗ 𝑞 ∗ 𝑀𝑝) 𝑚𝑜𝑑 𝑛. 

The four square roots are 𝑥, − 𝑥, 𝑦 𝑎𝑛𝑑 −  𝑦  (𝑚𝑜𝑑𝑢𝑙𝑜 𝑛). 

A workout example: The communication between two parties start with key generation:  for example, Entity 

A chooses the primes p = 277, q = 331, and computes n = p. q = 91687. A’s public key is n = 91687, while A’s 

private key is (p = 277, q= 331). A then declares the public key to the other party who uses the public key n to 

encrypt message and sends to entity A. after that  the entity A decrypts message by its private key.  The process of 

encryption and decryption is as follows.  

Encryption: Suppose the last six bits of original messages are required to be replicated prior to encryption. In 

order to encrypt the 10-bit message m = 1001111001, B replicates the last six bits of m to obtain the 16-bit message 

m = 1001111001111001, which in decimal notation is m = 40569. B then computes c =  m2 mod n = 405692 

mod 91687 =  62111 and sends this to A. 

Decryption: To decrypt c, A uses aforesaid algorithm and her knowledge of the factors of n to compute the four 

square roots of c mod n: m1 = 69654,  m2 = 22033,  m3 = 40569,  m4 = 51118, which in binary are m1 = 

10001000000010110,    m2 = 101011000010001,     m3 = 1001111001111001,          m4 = 1100011110101110.  Since 

only m3 has the required redundancy, A decrypts c to m3 and recovers the original message (m) = 100111100 

 

2.2.2 Cipher Variant-2 

Rabin’s Cryptosystem is composed of Key Setup, Encryption and Decryption. The following variant is for large 

prime calculation outside the prime formation of 4k+3.  

Step-1: First choose random number 𝑏𝜖𝕫𝑝 until 𝑏2 − 4𝑎  is a quadratic non residue modulo p. i.e.,(
𝑏2−4𝑎

𝑝
) = −1. 

        By the condition on b
2

 -4a, f is irreducible. Therefore 𝑅 = 𝕫𝑝[𝑥] / (𝑓(𝑥)) is isomorphic to𝔽𝑝2 , the finite field of    

       order p
2.
 Write 𝜉 for the image of x in R. Over R we have 𝑓(𝑥)  =  (𝑥 − 𝜉) (𝑥 − 𝜉𝑝) so that 𝜉𝑝+1 =  𝑎 in R.   

       Therefore ξ
𝑃+1

2  ∊  𝕫𝑝 ⊂  R . 
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Step-2: Let f be the polynomial 𝑥2 − 𝑏𝑥 + 𝑎 in 𝕫 p[x]. The b is picked randomly in range (0….p). Similarly f be the     

             polynomial 𝑥2 − 𝑏𝑥 + 𝑎 in 𝕫 q[x] and b is picked randomly in range (0……q). [x] is a quadratic reciprocity. 

Step-3: Compute r= (𝑥)
𝑝+1

2    mod f and r= (𝑥)
𝑞+1

2    mod f using algorithm (note: r will be an integer). 

Step-4: Return(r, -r) note: r= residue. r is computed using polynomial arithmetic modulo the polynomial f. 

Note: One of several ways to compute Legendre symbol  (
𝑎

𝑝
) is as 𝑎

𝑝−1

2  mod p with result p-1 replaced by -1.   

A workout example:  

According to congruence law. If 𝑚2 ≡ ⍺ 𝑚𝑜𝑑 𝑁 where = 𝑝 ∗ 𝑞 =2173, 

  𝑚2 ≡ ⍺𝑝 𝑚𝑜𝑑 𝑝, now compute ⍺𝑝 = 1945 𝑚𝑜𝑑 41 = 18, 

 𝑚2 ≡ ⍺𝑞 𝑚𝑜𝑑 𝑞, now compute ⍺𝑞  = 1945 𝑚𝑜𝑑 53 =  37. 

Let b=2,  (𝑏2 − 4𝑎)
𝑃−1

2  mod 41 = (22 − 4 ∗ 18)
41−1

2 mod 41   

                                                      =  (−68)20 𝑚𝑜𝑑 41 =  ((41 ∗ 2) − 86)20  

                                                       = 1420 = (145)4 
𝑚𝑜𝑑 41 = 40, 

That is p − 1 because 41 − 1 = 40, hence choice b = 2 verifies that 

(
𝑏2−4𝑎

𝑝
) = −1 and stick to it. So (p-1) replaced by -1. Now, we set polynomial for 𝕫 p.  

 f = x
2
 – bx + ⍺ mod 41= x

2
 – 2x + 18 mod 41= x

2
 + (41– 2) x + 18 mod 41= x

2
 +39x + 18 mod 41. X is a variable of 

a polynomial and it has not particular value. Now compute (x)
𝑃+1

2  mod f that is x
21

 mod f. The binary representation 

of 21(10) = 10101(2) 

Note: Easy binary conversion. 

Step-1: Divide 21 by 2 until the quotient 1 and ignore remainder.  

Step-2: Set even number =0 and odd number =1. 

     Division    =           1              2                     5                    10                     21  

     Binary settings =    1              0                     1                     0                      1 

 

Now compute left to right binary exponentiation.  X
k
 can rise in the following way. Just like point addition and point 

doubling. Means that start from x
1
 and then square move to next bit (if next bit additive identify that will be added 

and pointer point to that one. Else if next bit is multiplicative identity that will be multiply).  

Hence we can write 10101=x
2
, x

4
, x

5
, x

10
, x

20
, x

21
 mod f 
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Now compute all x
k
 mod f under 𝕫 41,  

Step-1: X
2
 mod f under 𝕫 41, 

            𝑥2 + 39𝑥 + 18|
𝑥2+39𝑥+18

1

𝑥2
  

                                          
−      −       −

−39𝑥−18 
            

 mod 41 

                                              = (41 − 39)x +41-18 
                                              = 2x + 23                 
        

Since −39𝑥 − 18 goes beyond the limit of 𝕫 41, so we need to turn it back to the limit. 

−39𝑥 =  (41 − 39)𝑥 = 2𝑥 𝑎𝑛𝑑  − 18 = 41 − 18 = 23 

Step-2: X
4
 mod f under 𝕫 41= (x

2
)

2

𝑚𝑜𝑑 𝑥2 + 39𝑥 + 18 mod 41. 

(2x+23)
2
 mod 𝑥2 + 39𝑥 + 18 under 𝕫 41. 

=4𝑥2 + 92𝑥 + 529 mod 𝑥2 + 39𝑥 + 18  

= 4𝑥2 + 10𝑥 + 37 𝑚𝑜𝑑 𝑥2 + 39𝑥 + 18 

𝑥2 + 39𝑥 + 18|
4𝑥2+156𝑥+72

4

4𝑥2+10𝑥+37                                                                                            

                   
       

−       −           −

−146𝑥−35 
            

mod 41 

                         
        

= ((41 ∗ 4) − 146)x + 41 − 35 

        
                             = 18x + 6                                                              

           Hence x
4
 =18x + 6 

 

Since 92𝑥 + 529 goes beyond the limit of 𝕫 41.So we need to turn it back to the limit. 

(92 − 41 ∗ 2)𝑥 + 529 − 41 ∗ 12 = 92𝑥 − 82𝑥 + 529 − 492 = 10𝑥 + 37 𝑚𝑜𝑑 41, Similarly,  

−146𝑥 − 35 =  ((41 ∗ 4) − 146)𝑥 + 41 − 35 = 18𝑥 + 6 

 

Step-3: X
5
 mod f under 𝕫41 =  x ∗ x4 mod

 
𝑥2 + 39𝑥 + 18 mod 41=(18x+6)x=18x

2
+6x  

               𝑥2 + 39𝑥 + 18|
18𝑥2+702𝑥+324

18

18𝑥2+6𝑥                                                                                            

                                           
−       −           −

−696𝑥−324 
            

mod 41 

                                          
        

= ((41 ∗ 17) − 696)x + (41 ∗ 18) − 324 

                                      
        

= 697x − 696x + 328 − 324 

                                      = x + 4 , hence x5 = x + 4 

 

 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                                                18 

            

Step-4: X
10

 mod f under 𝕫 41= (x
5
)

2  mod f mod 41=  𝑥2 + 8𝑥 + 16 mod 𝑥2 + 39𝑥 + 18 

               x2 + 39x + 18|
x2+39x+18

1

x2+8x+16                                                                                            

                                           
−    −        −

−31𝑥−2 
            

   mod 41 

                                        
           

= (41 − 31)x + 41 − 2 

                                        
        

= 10x + 39 

                                    Hence x
10

 =10x + 39 

 

Step-5: X
20

 mod f under 𝕫 41= (x
10

)
2 mod f mod 41=  100𝑥2 + 780𝑥 + 1521 mod f mod 𝕫 41.Since 100𝑥2 + 780𝑥 +

1521 goes beyond the limit of 𝕫 41. That means I went to future, I need go back to present (100 − 82)𝑥2 +

(780 − 41 ∗ 19)𝑥 + 1521 −(41∗37) =   18x
2
 +x +4 mod 𝑥2 + 39𝑥 + 18 under 𝕫 41 

 𝑥2 + 39𝑥 + 18|
18𝑥2+702𝑥+324

18

18𝑥2+𝑥+4                                                                                            

                              
−     −           −

−701𝑥−320 
            

  mod 41 

                           
        

= (738x − 701)x + 328 − 320 

                            = 37x + 8,  

       hence x20 = 37x + 8 

 

Step 6: X
21

 mod f under 𝕫41 = 𝑥20𝑥 𝑚𝑜𝑑 𝑓 𝑚𝑜𝑑 41 (37x+8)x=37x
2
+8x mod f mod 𝕫 41, 

               𝑥2 + 39𝑥 + 18|
37𝑥2+1443𝑥+666

37

37𝑥2+8𝑥                                                                                         

                                              
−     −           −

−1435𝑥−666 
            

  mod 41 

                                             
        

= ((41 ∗ 35) − 1435)x + 697 − 666 

                                          = 0 + 31 

Finally x term has been vanished (surprised) leaving constant term 31. Thus m
2 

≡ ⍺1 mod 41, ⍺p=31 and -⍺p=41-

31=10(additive inverse).Let ⍺p
1
 =31, ⍺p

2
=10. Analogously. Now, we set polynomial for 𝕫 q before that we need to 

choose random value b (0…...q) for which we get another quadratic non residue. Previously the condition was fulfill 

by b=2. Now we need to choose different one rather than 2. Assuming b=4, i.e.,(𝑏2 − 4𝑎)
𝑞−1

2  mod 53=(16 − 4 ∗

37)
53−1

2  mod 53= (16-148)
26

 mod 53 

=  ((53 ∗ 3) − 132)26 = (27)
26

= (27
6
)4 27

2 mod 53 =49*40 mod 53 = 52 that is q-1 because 53-1=52 hence choice 

b = 4 verifies that (
𝑏2−4𝑎

𝑞
) = −1 and we stick to it. So (q-1) replaced by -1. Now, we set polynomial for 𝕫 q.  

f = x
2
 – bx + ⍺q mod q= x

2
 – 4x + 37 mod 53= x

2
 + 49x + 37 mod 53. X is a variable of a polynomial and it has not 

particular value.  
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Now compute (x)
𝑞+1

2  mod f=(x)
53+1

2  mod f that is x
27

 mod f. The binary representation of 27(10) = 110112. The 

following is an easy binary conversion technique. 

Step-1: Divide 27 by 2 until the quotient 1 and ignore remainder.  

Step-2: Set even number =0 and odd number =1. 

    Division    =            1              3                     6                    13                     27  

    Binary settings =     1              1                     0                     1                       1 

Now compute left to right binary exponentiation (Rules for moving from one pointer to another). 

Step-1: Start from left most bit x
1
.square it (x

2
) 

Step-2: Now move forward one bit  for or a bit by bit if upcoming bit is additive identity(0), addition will be 

performed(x
2+0

) means that square term unchanged else if upcoming bit is multiplicative identity(1) ,multiplication 

will be performed(x
2
.x)=x

3
 likewise continue up to final bit.  

Hence we can write 11011=x
2
, x

3
, x

6
, x

12
, x

13
,
 
x

26
 x

27
 mod f 

Now compute all x
k
 mod f under 𝕫 53,  

 
Step-1: X

2
 mod f under 𝕫 53, 

 

 

 

 

Since −49𝑥 − 37 goes beyond the limit of 𝕫 53, so we need to turn it back to the limit. Means that we are out range 

so we need add something to move in boundary.  

Step-2: X
3
 mod f under 𝕫 53=(4x + 16 )x=4x

2
+16x mod x

2
+49x+37 mod 53 

            𝑥2 + 49𝑥 + 37|
4𝑥2+196x+148

4

4𝑥2+16𝑥                                                                                            

                                         
−      −       −

−180x−148
            

 mod 53 

                       = (212 − 180)x + 159 − 148 

                  ∴  𝑥3  = 32x + 11 (mod 53)        

 

  

 

 

𝑥2 + 49𝑥 + 37|
𝑥2+49x+37

1

𝑥2
                                                                                           

                 
             

−      −       −

−49𝑥−37
            

 mod 53 

                         = (53 − 49)x + 53 − 37 

                         = 4x + 16                                

Hence x
2
 =4x + 16    (mod 53)                            
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Step-3: X
6
 mod f under 𝕫 53=(32x + 11 )

2 
=1024x

2
+704x+121 mod x

2
+49x+37 mod 53 =17x

2
+15x+15 mod f mod 

53 

              𝑥2 + 49𝑥 + 37|
17𝑥2+833x+629

17

17𝑥2+15𝑥+15                                                                                            

                                            
−        −             −

−818x−614
            

 mod 53 

                  ∴  𝑥6  = 30x + 22 (mod 53)   

Step-4: X
12

 mod f under 𝕫 53=(30x + 22)
2 
=900x

2
+1320x+484 mod x

2
+49x+37 mod 53  

= (900-848)x
2
+(1320-1272)x+484-477=52x

2
+48x+7 

       𝑥2 + 49𝑥 + 37|
52𝑥2+2548x+1924

52

52𝑥2+48𝑥+7                                                                                            

                                      
−        −             −

−2500x−1917
            

 mod 53 

             ∴  𝑥12  = 44x + 44 (mod 53)   

Step-5: X
13

 mod f under 𝕫 53=(44x + 44)x=44x
2
+44x mod x

2
+49x+37 mod 53  

             𝑥2 + 49𝑥 + 37|
44𝑥2+2156x+1628

44

44𝑥2+44𝑥                                                                                            

                                            
−        −             −

−2112x−1628
            

 mod 53 

                ∴  𝑥13  = 8x + 15 (mod 53)   

Step-6: X
26

 mod f under 𝕫 53=(8x + 15 )
2
=64x

2
+240x +225 mod x

2
+49x+37 mod 53  

= (64-53)x
2
+(240-212)x+225-212=11x

2
+28x+13 mod x

2
+49x+37 mod 53 

        𝑥2 + 49𝑥 + 37|
11𝑥2+539x+407

11

11𝑥2+28𝑥+13                                                                                            

                                      
−        −             −

−511x−394
            

 mod 53 

             ∴  𝑥26  = 19x + 30 (mod 53)  

Step-7: X
27

 mod f under 𝕫53 = (19x + 30)x=19x
2
+30x mod x

2
+49x+37 mod 53  

                   𝑥2 + 49𝑥 + 37|
19𝑥2+931x+703

19

19𝑥2+30𝑥                                                                                            

                                              
−        −             −

−901x−703
            

 mod 53 

                                             = ((53 ∗ 17) − 901)x + 39 (mod 53)   

                                             ∴  𝑥27  = 0 + 39 (mod 53)   

Finally x term has been vanished (surprised) leaving constant term 39. Thus m
2 

≡ ⍺q mod 53, ⍺q=39 and -⍺q=53-

39=14(additive inverse).Let ⍺q
1
 =39, ⍺q

2
=14. Now we have to calculate Bezouts coefficient for q=53 and p=41 by 

using Extended Euclidean algorithm. Hence, x=-17, y=22. Means that -17 is inverse of y(41-17)=24 and 22 is 

inverse of x. hence, u=24, v=22. Now using Chinese remainder theorem we have to calculate four conjugative roots 
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(R). Achieving coefficients is Bezout coefficients come from inversion technique (recursively) that is why quadratic 

residue modulo p and modulo q are used recursively in Chinese remainder theorem. CRT =  (Bezouts coefficient1 ∗

private key1 ∗ square root2 + Bezouts coefficient2  ∗  private key2 ∗  square root1) mod N. as we know square 

root =±√ means that formula must be used twice one for positive root and one for negative root and therefore the 

CRT is as follows.  

𝑅1 = { (𝑦 ∗ 𝑝 ∗ ⍺𝑞1) + (𝑥 ∗ 𝑞 ∗ ⍺𝑝1)} 𝑚𝑜𝑑 2173 

     =  22 ∗ 41 ∗ 39 − 17 ∗ 53 ∗ 31 = 35178 − 27931 = 7247 𝑚𝑜𝑑 2173 = 728 

𝑅2 =  −𝑅1 𝑚𝑜𝑑 2173 = 2173 − 728 = 1445 

R3 =  {(𝑦 ∗ 𝑝 ∗ ⍺𝑞2) − (𝑥 ∗ 𝑞 ∗ ⍺𝑝2)} 𝑚𝑜𝑑 2173 

     =  22 ∗ 41 ∗ 14 + 17 ∗ 53 ∗ 10 = 12628 − 9010 = 31638 𝑚𝑜𝑑 2173 = 2081 

𝑅4 = −𝑅3 𝑚𝑜𝑑 2173 = 2173 − 2081 = 92 

 

Therefore intended message is one of the four roots (728, 1445, 2081, 92). To identify   right one from four root is 

quit but tricky. However, it could be solution of parity bit selection or replicating biting technique. The message can 

be identified among four roots by choosing such roots which satisfies any one of them R1 or R2 or R3 or R4 ≡ ±1 mod 

53 and ≡ ±2 mod 41. 

2.2.3 Existing Research on Rabin Cipher 

There are many surveys have been dedicated over Rabin’s cryptosystem. Recently various modifications of Rabin’s 

cryptosystem have been published in different scientific journals (Hardy, et.al., 1971), Identification Scheme using 

biquadratic residuosity. A Rabin scheme working with primes p=7 and q=11 congruent 3 modulo 4 can be defined 

considering the decomposition 𝑁 =  𝑣�̅� 𝑤𝑖𝑡ℎ 𝜈 =  𝜋1𝜋2 being the product of two primary factors of p and q 

respectively. 

A worked out example: the public key V, message (m) =13,  

Encrypted message {C, b0, b1} where C=m
2
 mod N=15, b0=m mod 2 =1,  

𝑏1 = {

   1       𝑖𝑓        [
𝑚

𝑣
]

4
         ∈ {1,   i }

       0      𝑖𝑓          [
𝑚

𝜈
]

4
        ∈ {−1, −𝑖 }

… … … … … . . 𝐸𝑞𝑢. (17) 

b1=[
13

77
]

4
=[

13

7
]

4
[

13

11
]

4
=[

2

7
]

4
[

3

7
]

4
[

2

11
]

4
= 1⨉ − 1⨉ − 1 = 1 
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Decryption Stage: According to Congruence law, step (1, 2) is computed.  

Step-1: 
77

7
 V1 ≡ 1 mod 7→ 11 V1 ≡ 1 mod 7→ 2 V1 ≡ 1 mod 7→ V1 = 2  

Step-2: 
77

11
 V2 ≡ 1 mod 11→7 V2 ≡ 1 mod 11→ (-3) V2 ≡ 1 mod 11→V1 = 8 

The following root computation process for deterministic polynomial time because of Blum prime formation is 

considered in this example.  

a1 = C 
((p+1)/4)

 mod p = 15
2  

mod 7 = 1  

 a2 = C 
((q+1)/4)

 mod q =15
3 
mod 11 =  9 

                        [ + + ] 

  a3 = p – a1 = 7 - 1 = 6 inverse of a1 

  a4 = q - a2 = 11 – 9 = 2 inverse of a2 

                         [ - - ] 

 

Now according to CRT, Four roots of unity is computed bellow.   

Step-1:  [++]  𝑥 ≡ 1 𝑚𝑜𝑑 7 𝑎𝑛𝑑  𝑥 ≡ 9 𝑚𝑜𝑑 11 

                         𝑥1 =  {𝑎1 ∗  𝑉1 ∗  
𝑁

𝑝
  +  𝑎2 ∗ 𝑉2 ∗  

𝑁

𝑞
 }  𝑚𝑜𝑑 𝑁 

                               =  {1 ∗  2 ∗  
77

7
 +  9 ∗  8 ∗  

77

11
}   𝑚𝑜𝑑 77 =  527 (77)  =  64 

 

Step-2:  [−+]  𝑥 ≡ 6 𝑚𝑜𝑑 7 𝑎𝑛𝑑  𝑥 ≡ 9 𝑚𝑜𝑑 11 

                       𝑥2  = {𝑎2 ∗  𝑉1 ∗  
𝑁

𝑝
+  𝑎3 ∗  𝑉2 ∗  

𝑁

𝑞
 }  𝑚𝑜𝑑 𝑁            

                             =  {6 ∗ 2 ∗  
77

7
 + 9 ∗  8 ∗  

77

11
 }  𝑚𝑜𝑑 77 =  636 (77)  =  20 

 

Step-3: [+−]   𝑥 ≡ 1  𝑚𝑜𝑑 7 𝑎𝑛𝑑  𝑥 ≡ 2 𝑚𝑜𝑑 11 

                       𝑥3 =  {𝑎1 ∗  𝑉1 ∗  
𝑁

𝑝
  +  𝑎4 ∗ 𝑉2 ∗  

𝑁

𝑞
 }  𝑚𝑜𝑑 𝑁 

                             =  {1 ∗  2 ∗  
77

7
+ 2 ∗  8 ∗  

77

11
 }  𝑚𝑜𝑑 77 =  134 (77)  =  57 

 

Step-4: [− −]    𝑥 ≡ 6 𝑚𝑜𝑑 7 𝑎𝑛𝑑  𝑥 ≡ 2 𝑚𝑜𝑑 11 

                         𝑥4  =  {𝑎3 ∗  𝑉1 ∗  
𝑁

𝑝
  +  𝑎4 ∗  𝑉2 ∗  

𝑁

𝑞
}  𝑚𝑜𝑑 𝑁 

                              =  {6 ∗  2 ∗  
77

7
  +  2 ∗  8 ∗  

77

11
 }  𝑚𝑜𝑑 77 =  244 (77)  =  13 

Choose two roots specified by b0 those are (x3, x4). Now compute quartic residues as follows 

D1=[
𝑋3

𝑉
]

4
=[

57

77
]

4
=[

57

7
]

4
[

57

11
]

4
=[

1

7
]

4
[

2

11
]

4
= 1 ⨉ −1 = −1 = 0 

D2= [
𝑋4

𝑉
]

4
=[

13

77
]

4
=[

13

7
]

4
[

13

11
]

4
=[

2

7
]

4
[

3

7
]

4
[

2

11
]

4
= 1 ⨉ −1 ⨉ − 1 = 1 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                                                23 

            

Now D2 is equivalent to b1. So root x4=13 is originally decrypted message. 

(Williams, 1998) proposed an implementation of the Rabin cryptosystem in 1980 using a parity bit and the Jacobi 

symbol. The decryption processes based on the observation is as follows. 

D =  
1

2
 (

 (p−1)∗(q−1)

4
 + 1), if b = a

2
 mod N and (

𝛼

𝑁
) = 1, we have b

D
 = 𝛼 (

𝛼

𝑝
) = 𝛼 (

𝛼

𝑞
), given that α( 

ϕ(N)
4 )  = (𝛼 ψ1 + 𝛼 

ψ2) 
ϕ(N)

4   = α( 
ϕ(N)

4 ) ψ1 + α( 
ϕ(N)

4 ) ψ2 = ( 
𝑎

𝑝
 ) ψ1 + ( 

𝑎

𝑞
 ) ψ2 = (

𝛼

𝑝
) = (

𝛼

𝑞
), as (

𝛼

𝑝
) =  𝛼 

𝑝−1
2   mod p , (

𝛼

𝑞
) =  𝛼 

𝑞−1
2   mod q   

Public key: N, S, where S is an integer such that Jacobi 𝑠𝑦𝑚𝑏𝑜𝑙 ( 
𝑆

𝑁
 )  =  −1 

Encrypted message: C, c1, c2, where c1 =
1

2
{1 – (

𝑚

𝑁
)}, 𝑚1 = m ∗ S𝑐1 mod N,  

𝑐2  =  𝑚1 𝑚𝑜𝑑 2, and 𝐶 =  𝑚1
2 𝑚𝑜𝑑 𝑁. 

A workout example:   

Decryption stage: Receiver computes m′ = C
D
 mod N and m′′ = N − m′, and choose the two roots number among 

four with the parity specified by c2. The original message is recovered as opposite of m = S
−c1

m′′. 

Step 1: Suppose Alice and Bob are communicating each other by exchanging message. First Alice choses two 

random prime number p=7 and q=11 according to p≡q≡3 mod 4 privately and calculate public key N=7.11 = 77, 

secret key D =  
1

2
 (

 ( 7−1)(11−1)

4
 + 1) = 8. After that she will choose S such that (

𝑆

𝑁
) ≡ −1 , Let S = 2 and ( 

2

77
 ) = ( 

2

7
 ) 

( 
2

11
 ) = -1. Now Alice publicizes two public keys {77, 2} and keeping D as a private key in her pocket.  

Step 2: Now Bob wants to send message (𝑚)  =  54 to Alice. First, he will compute  

      𝑐1  =  
1

2
{ 1 – (

54

77
 )} =  

1

2
{1 – (

 54

7
) (

54

11
) } =  

1

2
{1– (

 6

7
 )  (

32

7
) (

6

11
 ) (

32

11
)} 

           =  
1

2
{1– (

 2

7
) (

3

7
) (

2

11
) ( 

3

11
)} =  

1

2
{1– (

3

11
)} , 3 ≡ 3 𝑚𝑜𝑑 4, 11 ≡ 3 𝑚𝑜𝑑 4  

            =  
1

2
[1– {– (

11

3
)}] =  0,  

𝑚1 =  20 ∗ 54 𝑚𝑜𝑑 77 = 54,  𝑐2 =  54 𝑚𝑜𝑑 2 = 0, 𝑎𝑛𝑑  

𝐶 = 542 𝑚𝑜𝑑 77 =  67 and then he will send tuple (0, 0, 67) as a cypher text to Alice. 

Step 3: 𝑚′ = 𝐶𝐷 𝑚𝑜𝑑 𝑁 =  ((67)4)2
 
𝑚𝑜𝑑 77 = 23, 𝑚′′ = 𝑁 − 𝑚′ = 77 − 23 = 54 
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the original message is 54 because sending parity bit of Bob is even that is why message must be even. William’s 

Scheme work if and only if (
𝑚

𝑁
) = 1 𝑎𝑛𝑑 (

𝑆

𝑁
) =  −1. This scheme does not have solution of same quadratic residue 

too. Another simple variant is as follows.  

Encryption Message:  {𝐶, 𝑏0, 𝑏1}, where Let the private keys are: 𝑝 =  19 and 𝑞 =  31, 

Message (M)  =  65 =  A (ASCII). Public key N =  589   

𝐶 =  652 𝑚𝑜𝑑 589 = 102 ,  𝑏0 =  𝑀 𝑚𝑜𝑑 2 = 1, b1 =
1

2
{1 +

65

589
 } =  0.5552  

A sends the triplet (102, 1, 0.5552) to B.  

 

Decryption: B’s private keys 𝑝 = 19 and 𝑞 = 31 are predefined.   

 B computes after getting response from an entity A is as follows.  

𝑀𝑝 =  𝐶 
𝑝+1

4  𝑚𝑜𝑑 𝑝 =  1025 mod 19 = 1022 ∗ 1023 mod 19 = 11   

𝑀𝑞 =  𝐶 
𝑞+1

4  𝑚𝑜𝑑 𝑞 = 1028 mod 31 =  28   

𝜆1 ∗ 19 + 𝜆2 ∗ 31 = 1 𝑎𝑛𝑑 𝐺𝐶𝐷 (31, 19) = 1. Applying Extended Euclidean algorithm, find out λ1 = −13,  λ2=8  

and then applying Chinese remainder theorem four roots can be calculated by following ways.  

X1 =  (−13 ∗ 19 ∗ 28 +  8 ∗ 31 ∗ 11) 𝑚𝑜𝑑 589 

      =  (−6916 +  2728) 𝑚𝑜𝑑 589 =  4712 − 4188 = 524 

X2 = N - X1 = 589 – 524 = 65 

X3 =  (−13 ∗ 19 ∗ 28 −  8 ∗ 31 ∗ 11) 𝑚𝑜𝑑 589 

      =  (−6916 −  2728) 𝑚𝑜𝑑 589 

      =  10013 –  9644 =  369 

X4 = N - X3 = 589 – 369 = 220 

Now two roots(x2, x3) will be selected specified by b0 and calculate two equation  

𝑅1  =  
1

2
 {1 +

𝑥2

𝑁
}  =   

1

2
 {1 +

65

589
}  = 0.5552 

𝑅2  =  
1

2
 {1 +

𝑥3

𝑁
}  =   

1

2
 {1 +

369

589
}  = 0.8132 

Now bob will match R1and R2 with b1. Since b1=R1, So original message x2=65.  

Alternatively the following approach can be applied. 

𝑀𝑝 =  𝐶
(𝑝+1)

4  𝑚𝑜𝑑 𝑝 =  1025 𝑚𝑜𝑑 19 = 1022 ∗ 1023 𝑚𝑜𝑑 19 = 11 

 𝑀𝑞 =  𝐶
(𝑞+1)

4   𝑚𝑜𝑑 𝑞 = 1028 𝑚𝑜𝑑 31 =   28 

Up, Uq 
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−𝑀𝑝 𝑚𝑜𝑑 𝑝 = 19 –  11 =  8 𝑚𝑜𝑑 19 =  8, 

−𝑀𝑞 𝑚𝑜𝑑 𝑞 =  31 −  28 =  3 𝑚𝑜𝑑 31 =  3  

Up-, Uq- 

𝑛/𝑝 ∗  𝑣₁ ≡    1 𝑚𝑜𝑑 𝑝 →  31 ∗  𝑣₁  ≡  1 𝑚𝑜𝑑 19 →  𝑣₁ =  8 V1 

𝑛/𝑞 ∗  𝑣2 ≡   1 𝑚𝑜𝑑 𝑞 →  19 ∗  𝑣2  ≡   1 𝑚𝑜𝑑 31 →  𝑣2 =  18  V2 

 

Finally, by applying the Chinese remainder theorem, four square roots has to be computed and the system of 

congruence 𝑥 ≡  𝑢ᵢ ∗ 𝑣ᵢ 
𝑛

𝑛𝑖
 is as follows: 

Step-1: 𝑥 ≡   11 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡   28 𝑚𝑜𝑑 31:  

             𝑥 =  (𝑢𝑝 ∗  𝑣1 ∗  
𝑁

𝑝
 +  𝑢𝑞 ∗  𝑣2 ∗  

𝑁

𝑞
) 𝑚𝑜𝑑 𝑁 

                 =  (11 ∗ 8 ∗ 31 +  28 ∗ 18 ∗ 19) 𝑚𝑜𝑑 589 

                  = 12304 𝑚𝑜𝑑 589 

                  = 524  

Step-2: 𝑥 ≡   8 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  28 𝑚𝑜𝑑 31: 

            𝑥 =  (𝑢𝑝 ∗  𝑣1 ∗  
𝑁

𝑝
 +  𝑢𝑞 ∗  𝑣2 ∗  

𝑁

𝑞
) 𝑚𝑜𝑑 𝑁 

                =  (8 ∗ 8 ∗ 31 +  28 ∗ 18 ∗ 19) 𝑚𝑜𝑑 589  

                =  11560 𝑚𝑜𝑑 589  

                = 369  

Step-3: 𝑥 ≡  11 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  3 𝑚𝑜𝑑 31:  

             𝑥 =  (𝑢𝑝 ∗  𝑣1 ∗  
𝑁

𝑝
 +  𝑢𝑞 ∗  𝑣2 ∗  

𝑁

𝑞
) 𝑚𝑜𝑑 𝑁 

                 =  (11 ∗ 8 ∗ 31 +  3 ∗ 18 ∗ 31) 𝑚𝑜𝑑 589  

                  =  4402 𝑚𝑜𝑑 589  

                   =  279  

 

Step-4: 𝑥 ≡   8 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  3 𝑚𝑜𝑑 31: 

               𝑥 =  (𝑢𝑝 ∗  𝑣1 ∗  
𝑁

𝑝
 +  𝑢𝑞 ∗  𝑣2 ∗  

𝑁

𝑞
) 𝑚𝑜𝑑 𝑁 

                    =  (8 ∗ 8 ∗ 31 +  3 ∗ 18 ∗ 19) 𝑚𝑜𝑑 589 =  3010 𝑚𝑜𝑑 589 =  65  

Finally, the original message must be among the 524, 369, 279 𝑎𝑛𝑑 65, 𝐴𝑠 𝑏0 = 1, 

we take the 2 roots specified by b0, as x =  67, y =  181. 

Now r =  
1

2
{1 +  

𝑥

𝑛
  } =  

1

2
{1 +  

67

589
  } =  0.556876 

And s =   
1

2
{1 +  

𝑦

𝑛
  } =  

1

2
{1 + 

181

589
  } =  0.653650 

Now b = 0.556876, r =  b, the message M =  x =  67,  

So the Plaintext P =  (M − Ks)  =  (67 − 24)  =  43  
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(Elia, M. et al., 2013) implemented a solution of Rabin’s Cryptosystem using Dedekind Sum.  The implemented 

techniques are described as follows. 

 

Encrypted message: 

{C, b0, b1}, where 𝐶 = 𝑚2 𝑚𝑜𝑑 𝑁 =  132 𝑚𝑜𝑑 77 =  15. 𝑁 = 𝑝 ∗ 𝑞 = 7 ∗ 11 = 77 

𝑏0 =  𝑚 𝑚𝑜𝑑 2 = 13 𝑚𝑜𝑑 2 =  1, 𝑏1 =  𝑆 (13, 77) 𝑚𝑜𝑑 8. 

b1 =  77 + 1 – 2 (
13

77
) mod 8 =  78 – 2 (

13

7
) (

13

11
)  mod 8 = 78 − 2 (

6

7
) (

2

11
) 𝑚𝑜𝑑 8  

 = 78 – 2 (
2

7
) (

3

7
) (−1) mod 8 = 78 – 2 (1)(1)mod 8 = (78 − 2) mod 8 =  4  

Decryption stage: 

Receiver computes 𝜆1  =  −3 𝑎𝑛𝑑 𝜆2  =  2 by extended Euclidean algorithm and Roots are as follows. 

                              𝑢1 =  𝐶
(𝑝+1)

4   𝑚𝑜𝑑 𝑝 =  15
(7+1)

4  𝑚𝑜𝑑 7 = 1 

                              𝑢2 =  𝐶
(𝑞+1)

4   𝑚𝑜𝑑 𝑞  = 15
(11+1)

4  𝑚𝑜𝑑 11 =  9 

Now calculate four roots using Chinese Remainder theorem  

𝑋1 = (𝑝 ∗ 𝜆1 ∗ 𝑢2 + 𝑞 ∗ 𝜆2 ∗ 𝑢1) 𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 9 +  11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 =  64 

𝑋2  =  𝑁 −  𝑋1  =  77 −  64 =  13 

𝑋3 = (𝑝 ∗ 𝜆1 ∗ 𝑢2 − 𝑞 ∗ 𝜆2 ∗ 𝑢1) 𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 9 − 11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 =  20 

𝑋4  =  𝑁 −  𝑋3  =  77 −  20 =  57 

Choose two roots specified by b0 that’s are (X2, X4) now apply Dedekind sum on X2 = 𝐷2 =  𝑆(13,77)𝑎𝑛𝑑  

𝑋4  =   𝐷4  =  𝑆(57,77)  

Computation: 

 𝑋2 = 𝐷2 =  𝑆 (13, 77)  

     =  77 + 1 – 2 (
13

77
)  𝑚𝑜𝑑 8 

      =  78 – 2 (
13

7
) (

13

11
) 𝑚𝑜𝑑 8 

      =  78 – 2 (
6

7
) (

2

11
)  𝑚𝑜𝑑 8 

     =  78 – 2 (
2

7
) ( 

3

7
)  (−1) 𝑚𝑜𝑑 8 

     =  78 – 2 (1) (−1) (−1) 𝑚𝑜𝑑 8 

    =  (78 − 2) 𝑚𝑜𝑑 8 = 4 

𝑋4 = 𝐷4 = 𝑆 (57, 77)  

     = 77 + 1 – 2 (
57

77
 )  𝑚𝑜𝑑 8 

     = 78 – 2 (
57

7
 ) (

57

11
)  𝑚𝑜𝑑 8 

     = 78 – 2 (
1

7
 ) (

2

11
)  𝑚𝑜𝑑 8 

    = 78 − 2 (1) (−1) 𝑚𝑜𝑑 8 

    =  80  𝑚𝑜𝑑 8 = 0 
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Receiver accept the original message by comparing tow Dedekind sum D2 and D4 with b1. It can be seen that 

𝑏1 = 𝐷2 = 𝑋2 means that 13 is the right plaintext. This can be expressed using congruence law is as follows. 

Step-1: 
77

7
V1  ≡  1 mod 7 →  11 V1  ≡  1 mod 7 →  2 V1  ≡  1 mod 7 →  V1  =  2  

Step-2: 
77

11
V2 ≡  1 mod 11 → 7 V2 ≡ 1 mod 11 →  (−3)V2 ≡ 1 mod 11 → V2 = 8  

The following root computation process for deterministic polynomial time because of Blum prime formation is 

considered in this example.   

a1 = C
(p+1)

4   mod p = 152  mod 7 =  1  

a2 = C
(q+1)

4  mod q = 152 mod 11 = 9  

𝑎3 =  𝑝 – 𝑎1 =  7 −  1 =  6 inverse of 𝑎1.  

𝑎4 = 𝑞 −  𝑎2 = 11 –  9 =  2 inverse of 𝑎2                        

                        [ + + ] [ − − ] 

   According to CRT, four roots are calculated bellow.   

Step-1: [+ +]  𝑥 ≡  1𝑚𝑜𝑑 7 𝑎𝑛𝑑 𝑥 ≡ 9 𝑚𝑜𝑑 11 

                       𝑥1  = { 𝑎1 ∗  𝑉1 ∗  
𝑁

𝑝
  +  𝑎2 ∗ 𝑉2 ∗  

𝑁

𝑞
 } 𝑚𝑜𝑑 𝑁 

                             = {1 ∗  2 ∗  
77

7
+ 9 ∗  8 ∗  

77

11
} 𝑚𝑜𝑑 77 =  527 (77) = 64 

 

Step-2: [− +]   𝑥 ≡ 6 𝑚𝑜𝑑7 𝑎𝑛𝑑 𝑥 ≡  9 𝑚𝑜𝑑 11 

                       𝑥2  =  {𝑎2 ∗  𝑉1 ∗  
𝑁

𝑝
  +  𝑎3 ∗ 𝑉2 ∗  

𝑁

𝑞
  }  𝑚𝑜𝑑 𝑁             

                              = {6 ∗ 2 ∗  
77

7
+ 9 ∗  8 ∗  

77

11
 }  𝑚𝑜𝑑 77 =  636 (77)  =  20 

 

Step-3:  [+ −]   𝑥 ≡ 1𝑚𝑜𝑑 7 𝑎𝑛𝑑 𝑥 ≡  2 𝑚𝑜𝑑 11 

                        𝑥3 =  {𝑎1 ∗ 𝑉1 ∗  
𝑁

𝑝
  +  𝑎4 ∗  𝑉2 ∗  

𝑁

𝑞
 }  𝑚𝑜𝑑 𝑁 

                             =  {1 ∗  2 ∗  
77

7
  +  2 ∗  8 ∗  

77

11
 }  𝑚𝑜𝑑 77 = 134 (77) =  57 

 

Step-4:  [− −]   𝑥 ≡ 6 𝑚𝑜𝑑7 𝑎𝑛𝑑 𝑥 ≡  2 𝑚𝑜𝑑 11 

                         𝑥4 = { 𝑎3 ∗ 𝑉1 ∗  
𝑁

𝑝
  +  𝑎4 ∗  𝑉2 ∗  

𝑁

𝑞
}  𝑚𝑜𝑑 𝑁               

                             =  {6 ∗  2 ∗
77

7
+  2 ∗  8 ∗  

77

11
 } mod 77 = 244 (77) =  13  

 

Choose two roots specified by b0 that’s are (𝑋3, 𝑋4)now apply Dedekind sum on 𝐷3 =  𝑆 (𝑋3, 77)𝑎𝑛𝑑  

𝐷4 =  𝑆 (𝑋4, 77). The computation process is as follows: 
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𝐷3 =  𝑆 (57, 77)  

     = 77 + 1 – 2 (
57

77
 )  𝑚𝑜𝑑 8 

      = 78 – 2 (
57

7
) (

57

11
) mod 8   

     = 78 – 2 (
1

7
) (

2

11
)  𝑚𝑜𝑑 8 

     = 78 – 2 (1) (−1) 𝑚𝑜𝑑 8 

     =  80 𝑚𝑜𝑑 8 =  0 

 

 𝐷4 =  𝑆 (13, 77)  

      =  77 + 1 – 2 (
13

77
)  𝑚𝑜𝑑 8 

         =  78 – 2 (
13

7
) (

13

11
) ) 𝑚𝑜𝑑 8 

         =  78 – 2 (
6

7
 ) (

2

11
)  𝑚𝑜𝑑 8 

         =  78 – 2 (
2

7
)  (

3

7
) (−1) 𝑚𝑜𝑑 8 

         =  78 – 2 (1) (−1) (−1) 𝑚𝑜𝑑 8 

         =  (78 – 2) 𝑚𝑜𝑑 8 =  4 

Receiver accept the original message by comparing tow Dedekind sum (D3, D4) with b1. It can be seen that b1 =

D4 = X4 means that 13 is the right plaintext. Alternatively , receiver accept the original message by selecting two 

roots (X3, X4) among four specified by parity bit 𝑏0 compute following equation to select right one  

R1 =
1

2
{1 +

X3

77
} =

1

2
{1 +

57

77
} = 0.87013 

R2 =
1

2
{1 +

X4

77
} =

1

2
{1 +

13

77
} = 0.58442 

R2 is equivalent to b1, so Root X4 = 13 is the right plaintext revealed. They also show another deterministic 

variant of Rabin cryptosystem which is as follows.  

Public-key: 1
st
 public key N, 2

nd
 public key ξ, where 𝜉 =  𝛼2 ( 𝜓1  −  𝜓2 ) is an integer. 

 

Encrypted message: 

C For 1
st
 round, (CE, c2) for 2

nd
 round,  𝐶 =  𝑚2 𝑚𝑜𝑑 𝑁.  C1 =

1

2
{1 – (

 m

 N
) },   

𝐶2  =  𝑚 𝑚𝑜𝑑 2,   𝐶𝐸  =  𝐶 (−1)𝑐1  𝜉𝑐2  𝑚𝑜𝑑 𝑁 

Decryption stage: 

Receiver computes four square roots and chooses the two roots among four with the parity specified by C2. After 

that, he neglects one which is equivalent to CE from selected two roots and accepts remaining root as an original 

message.  

A workout example:  

Round 1
st
: At the initial round, Alice publicizes one public key and Bob generates an encryption key using Alice’s 

public key and then sends it to Alice. Suppose Alice and Bob are communicating each other by exchanging message. 

Alice choses two random prime number p=7 and q=11 according to 𝑝 ≡ 𝑞 ≡ 3 𝑚𝑜𝑑 4 privately and calculate public 
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key 𝑁 = 7 ∗ 11 =  77, Alice publicizes 1
st
 public keys 77 keeping secret key in her pocket. Then Bob generates 

initial encryption message 𝐶 =  132 𝑚𝑜𝑑 77 = 15 using the public key of Alice and send it to her.  

Round 2
nd

: In this round, Alice publicizes 2
nd

 public key after receiving first encrypted message from Bob, on the 

other hand, Bob generates another encrypted message which helps Alice to identify actual message using Alice’s 2
nd

 

public key and then sends it to Alice. She computes another public key using Euclidean Algorithm and Bob’s 

encryption message 15 is as follows: 

First of all the conditions 𝜆1 ∗ 𝑝 + 𝜆2 ∗ 𝑞 =  1 𝑎𝑛𝑑 𝐺𝐶𝐷 (𝑝, 𝑞)  =  1 must be true. These 𝜆1 , 𝜆2 are Bezout’s  

identity. 𝜓1 =  𝜆2 ∗ 𝑞 =  22, 𝜓2  = 𝜆1 ∗ 𝑝 =  −21, Let, new public key 𝜉 =  152 (𝜓1  −  𝜓2) 𝑚𝑜𝑑 𝑁 =

 152 (22 +  21) 𝑚𝑜𝑑 77 =  50 and declare 50 as a 2
nd

 public key. The following root computation process for 

deterministic polynomial time because of Blum prime formation is considered in this example.   

𝛼1 =  (𝐶𝐸)
(𝑝+1)

4  (𝑚𝑜𝑑 𝑝)  ≡  (15)2 (𝑚𝑜𝑑 7)  ≡  1 

𝛼2 =  (𝐶𝐸)
(𝑞+1)

4  (𝑚𝑜𝑑 𝑞)  ≡  (15)3  (𝑚𝑜𝑑 11)  ≡  9 

 

She will compute four roots using CRT. 

𝑌1 =  (𝛼2𝜓1 +  𝛼1𝜓2) 𝑚𝑜𝑑 𝑁 =  9 ∗ (−21)  + 1 ∗ 22) 𝑚𝑜𝑑 77 =  64. 

𝑌2  = 𝑁 − 𝑌1 = 77 − 64 =  13. 

𝑌3  =  (𝛼2𝜓1 +  𝛼1𝜓2)𝑚𝑜𝑑 𝑁 =  9 ∗ (−21)  − 1 ∗ 22) 𝑚𝑜𝑑 77 =  20 

𝑌4  =  𝑁 −  𝑌3  = 77 − 20 =  57      

 

Bob re-encrypts message using both public key of Alice as follows. 

C1 =
1

2
 {1 – (

 13

 77
)} =  

1

2
 {1 – (

 13

7
) (

13

11
)}  =  

1

2
{1– (

 2

7
) (

3

7
) (

2

11
)} =  0   

C2 = 13 𝑚𝑜𝑑 2 = 1, 𝐶𝐸 =  𝐶 (−1)𝑐1 ∗ 50𝑐2  𝑚𝑜𝑑 𝑁 = 15 (−1)0 ∗ 501 𝑚𝑜𝑑 77 = 57 

Now Bob will send 2
nd

 encrypted message as a pair (CE, C2) to Alice. Finally, Alice selects two roots (13, 57) 

specified by parity bit C2 among four and reject one root (57) specified CE. So remaining 13 will be accepted as a 

valid message by intended receiver.  

(Hasim, 2014) proposed an update methodology that used three private keys instead of two. Consequently, the eight 

non-deterministic plaintext generates from one cypher text. One of them is real plaintext. The advantage of this 

technique is to make confusing attacker while it is very annoying to receiver as extra effort is required to distinguish 

original plaintext out of eight text. The name of the technique initiated by author name. The description of 

techniques are as follows. 

Encryption of H-Rabin cryptosystem:  
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The key-generation process of H- Rabin crypto system is as the following: Choose three large distinct 

primes 𝑝, 𝑞 𝑎𝑛𝑑 𝑟. However the scheme works with any primes, choose 𝑝 ≡  𝑞 ≡  𝑟 ≡  3 (𝑚𝑜𝑑 4) to simplify the 

computation of square roots modulo p, q and r. Let N the public key such that N =  (𝑝 ∗ 𝑞 ∗  𝑟) where the primes 

p, q and r are the private key.  To encrypt a message only the public key N is needed, thus a cipher text is produced 

out of the original plaintext. To decrypt a cipher text the factors p, q and r of N are needed. The encryption process 

of H-Rabin cryptosystem is as the following:  

Let 𝑃 =  {0, 1, 2 …  𝑁 − 1} be the plaintext space (consisting of numbers)  

Let 𝑚 ∊  𝑃 =  {0, 1, 2 …  𝑁 − 1} be the plaintext  

Let C be the cipher text that can be computed by, 𝐶 =  𝑒𝑘 (𝑚)  ≡  𝑚2 (𝑚𝑜𝑑 𝑁)  

Now the encoded message can be sent as C. Once the message reaches the destination, it must be decrypted.   

Decryption of H-Rabin cryptosystem:   

To decode the cipher text, the private keys are necessary. For that reasons, use the decryption function dg (c) = √𝑐 

(mod N). Since the encryption function 𝑒𝑘 is not an injection function, the decryption is not ambiguous. There exist 

eight square roots of c mod N (𝑐 ≡  𝑚2 𝑚𝑜𝑑 𝑁), so there are eight possible messages. The decryption try to 

determine m such that: 𝐶 ≡  𝑚2 (𝑚𝑜𝑑 𝑁) which is equivalent to solving the three congruence:   

𝑍2  ≡  𝑐 (𝑚𝑜𝑑 𝑝),  

𝑍2  ≡  𝑐 (𝑚𝑜𝑑 𝑞),  

𝑍2  ≡  𝑐 (𝑚𝑜𝑑 𝑟)   

𝑚𝑝  ≡  𝐶
(𝑝+1)

4  (𝑚𝑜𝑑 𝑝) 

𝑚𝑞  ≡  𝐶
(𝑞+1)

4  (𝑚𝑜𝑑 𝑞) 

𝑚𝑟  ≡  𝐶
(𝑟+1)

4  (𝑚𝑜𝑑 𝑟) 

Finally, the eight square roots of c mod n can be computed applying the Chinese remainder theorem to the system of 

congruence: + 𝑚𝑝 (𝑚𝑜𝑑 𝑝), − 𝑚𝑝   (𝑚𝑜𝑑 𝑝), + 𝑚𝑞   (𝑚𝑜𝑑 𝑞), − 𝑚𝑞   (𝑚𝑜𝑑 𝑞), + 𝑚𝑟   (𝑚𝑜𝑑 𝑟), − 𝑚𝑟   (𝑚𝑜𝑑 𝑟) 

A workout Example:  

 Let 𝑁 =  1463 =  𝑝 ∗ 𝑞 ∗. 𝑟 =  7 ∗  11 ∗ 19 and m = 41. First, the message m must be encrypted using the 

encryption function: 𝐶 = 𝑒𝑘 (𝑚) =  𝑚2 (𝑚𝑜𝑑 𝑁) =  412 𝑚𝑜𝑑 1463 =  218 

The encrypted message C = 218 is sent to the receiver. The receiver must decrypt the message C and has to find the 

eight square roots of 218 modulo 7, modulo 11 and modulo 19. The following root computation process for 

deterministic polynomial time because of Blum prime formation is considered in this example.   

      𝑚𝑝 ≡  𝐶
(𝑝+1)

4   𝑚𝑜𝑑 𝑝 ≡  (218)
(7+1)

4  𝑚𝑜𝑑 7 ≡ 1 

      𝑚𝑞 ≡  𝐶
(𝑞+1)

4   𝑚𝑜𝑑 𝑞 ≡  (218)
(11+1)

4  𝑚𝑜𝑑 11 ≡ 3 

       𝑚𝑟 ≡  𝐶
(𝑟+1)

4   𝑚𝑜𝑑 𝑟 ≡  (218)
(19+1)

4  𝑚𝑜𝑑 19 ≡ 16 
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The system of congruence, 𝑥 =  𝑎𝑖𝑏𝑖  
𝑀

𝑚𝑖  is as follows 

 

+ 𝑚𝑝 (𝑚𝑜𝑑 𝑝)  ≡ 1(𝑚𝑜𝑑 7) 

− 𝑚𝑝 (𝑚𝑜𝑑 𝑝)  ≡ 6(𝑚𝑜𝑑 7) 

+ 𝑚𝑞 (𝑚𝑜𝑑 𝑞)  ≡ 3(𝑚𝑜𝑑 11) 

− 𝑚𝑞 (𝑚𝑜𝑑 𝑞)  ≡ 8(𝑚𝑜𝑑 11) 

+ 𝑚𝑟 (𝑚𝑜𝑑 𝑟)  ≡ 16(𝑚𝑜𝑑 19) 

− 𝑚𝑟 (𝑚𝑜𝑑 𝑟)  ≡ 3(𝑚𝑜𝑑 19) 

 

Finally, we can apply the Chinese remainder theorem to compute the eight roots: First of all, we compute b1, b2 and 

b3 such: 

Computation:  
𝑁

7
b1  ≡  1 (mod 7)  →  209 b1  ≡  1 (mod 7)  →  6 b1  ≡  1(mod 7)  →  b1 = 6  

Computation:  
𝑁

11
b2 ≡  1 (mod 11)  →  133b2  ≡  1 (mod 11)  →  6 b2  ≡  1(mod 11)  →  b2 = 1  

Computation:  
𝑁

19
b3 ≡  1 (mod 19)  →  77 b3 ≡  1 (mod 19)  →  6 b3 ≡  1(mod 19)  →  b3 = 1  

 

Now according to CRT, four roots can be computed as follows.  

Step-1: x ≡ 1(𝑚𝑜𝑑 7), 𝑥 ≡  3(𝑚𝑜𝑑 11) 𝑎𝑛𝑑 𝑥 ≡  16(𝑚𝑜𝑑 19):  

            x1 =  {a1b1
𝑀

𝑝
+ a2b2

𝑀

𝑞
+ a3b3  

𝑀

𝑟
 } 𝑚𝑜𝑑 𝑁 

            x1 = {(1) (6) (11 ∗ 19) + (3) (1) (7 ∗ 19) + (16) (1) (7 ∗ 11)} 𝑚𝑜𝑑 1463 

            x1 =  2885 𝑚𝑜𝑑 1463 =  1422 

 

Step-2: 𝑥 ≡  6(𝑚𝑜𝑑 7), 𝑥 ≡  3(𝑚𝑜𝑑 11) 𝑎𝑛𝑑 𝑥 ≡  16(𝑚𝑜𝑑 19): 

            x2 =  {a1b1
𝑀

𝑝
+ a2b2

𝑀

𝑞
+ a3b3  

𝑀

𝑟
}  𝑚𝑜𝑑 𝑁 

                   x2 = {(6) (6) (11 ∗ 19) + (3) (1) (7 ∗ 19) + (16) (1) (7 ∗ 11)} 𝑚𝑜𝑑 1463  

             x2 = 9155 𝑚𝑜𝑑 1463 = 377 

 

Step-3: 𝑥 ≡ 1(𝑚𝑜𝑑 7), 𝑥 ≡ 8(𝑚𝑜𝑑 11) 𝑎𝑛𝑑 𝑥 ≡ 16(𝑚𝑜𝑑 19):  

             x3 =  {a1b1
𝑀

𝑝
+ a2b2

𝑀

𝑞
+ a3b3  

𝑀

𝑟
 } 𝑚𝑜𝑑 𝑁 

             x3 = {(1) (6) (11 ∗ 19) + (8) (1) (7 ∗ 19) + (16) (1) (7 ∗ 11)} 𝑚𝑜𝑑 1463 

             x3 = 3550 𝑚𝑜𝑑 1463 = 624 
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Step-4: 𝑥 ≡  1(𝑚𝑜𝑑 7), 𝑥 ≡  3(𝑚𝑜𝑑 11) 𝑎𝑛𝑑 𝑥 ≡  3(𝑚𝑜𝑑 19):  

             x4 = { a1b1
𝑀

𝑝
+ a2b2

𝑀

𝑞
+ a3b3  

𝑀

𝑟
}  𝑚𝑜𝑑 𝑁 

             x4 = {(1) (6) (11 ∗ 19) + (3) (1) (7 ∗ 19) + (3) (1) (7 ∗ 11)} 𝑚𝑜𝑑 1463  

              x4 =  1884 𝑚𝑜𝑑 1463 =  421 

Now, we can take the advantage of symmetry to get the other results: 

           Step-5:  x5 = 1463 − 1422 =  41. 

           Step-6: x6  = 1463 − 377 = 1086. 

           Step-7: x7 = 1463 − 624 =  839. 

           Step-8: x8 =  463 − 421 = 1042. 

 

Finally, the original message must be in following sequence. 1422, 377, 624, 421, 41, 1086, 839 𝑎𝑛𝑑 1042. The 

drawback of Deterministic Rabin Cryptosystem is that, it is applicable for an odd length message. In case of even 

length message, it can’t justify the original plaintext as replicated bit or repeated pattern cannot be noticed in any of 

four options.  

(Chakraborty, et.al., 2014) designed a hybrid Rabin Cryptosystem adding message authentication logic from 

Needham–Schroeder protocol (Roger,et.al.,1978, Waite, et.al., 1987). Hybrid Rabin Cryptosystem designed using a 

combination of Symmetric and asymmetric key that was why it was called hybrid. The technique can be described 

as follows.  

Round 1:  The sender A uses the receiver B’s public key to encrypt a message to the receiver containing to the 

receiver containing an identifier of A (IDA) and a nonce N1 which is used to identify this transaction uniquely. B 

sends a message to A encrypted with PUA and A’s nonce as well as a new nonce N2 generated by B. A returns N2 

Using B’s public key. A selects secret key Ks and sends 𝑀 =  𝐸(𝑃𝑈𝑏, 𝐸(𝑃𝑅𝑎, 𝐾𝑠)) to B. B computes 

𝐷(𝑃𝑈𝑎, 𝐷(𝑃𝑅𝑏, 𝑀)) to recover the secret key.  

Round 2:  T h e  N is the public key which is the multiplication of p and q where p and q are both private keys 

and both p and q are congruent to 3 mod 4. A prepares the message M by adding his shared secret key with the 

plaintext and then applying the encryption function 𝐶 = 𝑀2 𝑚𝑜𝑑 𝑁.  A further calculates 2 more values 

𝑎 𝑎𝑛𝑑 𝑏 such that 𝑎 =  𝑀 𝑚𝑜𝑑 2 𝑎𝑛𝑑 𝑏 =
1

2
(1 +

𝑀

𝑁
). for decryption B has to use the Chinese Remainder Theorem 

to get the four square roots. At first B has to calculate M𝑝 𝑎𝑛𝑑 M𝑞  such that M𝑝 = 𝐶
(𝑝+1)

4 mod p and M𝑞 =

𝐶
(𝑞+1)

4  mod q. Then B has to compute +M𝑝 𝑚𝑜𝑑 𝑝, − M𝑝 𝑚𝑜𝑑 𝑝, +M𝑞 𝑚𝑜𝑑 𝑞 𝑎𝑛𝑑 – M𝑞 𝑚𝑜𝑑 𝑞. These are the 4 

square roots. Then take the two roots having the same parity specified by a, say x and y. Compute the numbers 

1

2
(1 +

𝑥

𝑛
)  𝑎𝑛𝑑

1

2
(1 +

𝑦

𝑛
). Then take the root corresponding to the number equal to the value of b. Thus the message 

M is retrieved. Now B has to subtract the shared secret key from M to retrieve the plaintext. 
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A workout Example: The Modified Rabin Cryptosystem Sharing the Secret key is as follows. Let the 

𝐼𝐷 𝑜𝑓  𝐴 = 1001 𝑎𝑛𝑑 𝑡ℎ𝑒 𝐼𝐷 𝑜𝑓 𝐵 = 1002. A sends ID and nonce 𝑁1 =  311 encrypted with the public key of 

𝐵, 𝑖. 𝑒. 𝐸 (𝑃𝑈𝐵(1001||311)) 𝑡𝑜 𝐵. B sends nonce  

𝑁1 𝑎𝑛𝑑 𝑁2 =  653 Encrypted with the public key of 𝐴, 𝑖. 𝑒. 𝐸 (𝑃𝑈𝐴 (311||653)) to A. A sends the nonce N2 

encrypted with the public key of 𝐵 𝑖. 𝑒. 𝐸 (𝑃𝑈𝐵 , 653) 𝑡𝑜 𝐵.  A then encrypts the secret key KS to be shared with his 

own private key and then again encrypt it with the public key of B and sends 𝑋 =  𝐸 (𝑃𝑈𝐵 , 𝐸 (𝑃𝑅𝐴, 𝐾𝑆)) 𝑡𝑜 𝐵. B 

computes D(𝑃𝑈𝐴 , 𝐷(𝑃𝑅𝐵 , 𝑋))  to recover the secret key.  

Encryption:  

Let A wants to send the plaintext Pt =  43 and the secret key Ks =  24  

Then the message M =  (Pt  +  Ks)  =  (43 + 24)  =  67. 

Let the public key n = 589  

Then the cipher text C =  E (67, 589)  =  672 mod 589 =  366. 

 a =  M mod 2 =  67 mod 2 =  1,  b =  
1

2
{1 + 

𝑀

𝑁
} =

1

2
{1 +  

67

589
 } =  0.556876  

A sends the triple (366, 1, 0.556876) to B  

Decryption:  

Let the private keys are: 𝑝 =  19 𝑎𝑛𝑑 𝑞 =  31 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑁 = 589. The following root computation process for 

deterministic polynomial time because of Blum prime formation is considered in this example. B’s computation 

process is as follows. 

 Mp = C
(p+1)

4   mod p =  3665 mod 19 =  9  

 Mq = C
(q+1)

4  ) mod q = 3668 mod 31 =  5  

U1 

−𝑀𝑝 𝑚𝑜𝑑 𝑝 = 19 –  9 =  10 𝑚𝑜𝑑 19 =  10 

−𝑀𝑞 𝑚𝑜𝑑 𝑞 =  31 −  5 =  26 𝑚𝑜𝑑 31 =  26  

U2 

n/p ∗ v₁ ≡ 1 mod p →  31 ∗  v₁ ≡ 1 mod 19 →  v₁ =  8 V1 

n/q ∗  v2 ≡ 1 mod q → 19 ∗ v2 ≡ 1 mod 31 →  v2 =  18  V2 

 

Finally, by applying the Chinese remainder theorem to compute the four square roots and the system of congruence 

𝑥 ≡  𝑢𝑖 ∗ 𝑣𝑖 ∗
𝑛

𝑛𝑖
 is as follows: 

Step-1: 𝑥 ≡  9 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  5 𝑚𝑜𝑑 31:  

            𝑥1  =  {𝑢1 ∗ 𝑣1 ∗  
𝑁

𝑃
 +  𝑢2 ∗ 𝑣2 ∗

𝑁

𝑞
 } 𝑚𝑜𝑑 𝑁 

                = {9 ∗ 8 ∗ 31 +  5 ∗ 18 ∗ 19} 𝑚𝑜𝑑 589 

                =  3942 𝑚𝑜𝑑 589  

                =  408 

 

 

 

Step-2: 𝑥 ≡ 10 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  5 𝑚𝑜𝑑 31: 
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           𝑥2 = { 𝑢1 ∗ 𝑣1 ∗
𝑁

𝑃
+  𝑢2 ∗ 𝑣2 ∗  

𝑁

𝑞
}  𝑚𝑜𝑑 𝑁 

                = {10 ∗ 8 ∗ 31 +  5 ∗ 18 ∗ 19} 𝑚𝑜𝑑 589  

                =  4190 𝑚𝑜𝑑 589  

                 =  67  
 

Step-3: 𝑥 ≡  9 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  26 𝑚𝑜𝑑 31:  

            𝑥3  = { 𝑢1 ∗ 𝑣1 ∗  
𝑁

𝑃
 +  𝑢2 ∗ 𝑣2 ∗  

𝑁

𝑞
}  𝑚𝑜𝑑 𝑁  

                  = {9 ∗ 8 ∗ 31 +  26 ∗ 18 ∗ 31} 𝑚𝑜𝑑 589  

                  =  11124 𝑚𝑜𝑑 589  

                  =  522  
 

Step-4: 𝑥 ≡ 10 𝑚𝑜𝑑 19 𝑎𝑛𝑑 𝑥 ≡  26 𝑚𝑜𝑑 31: 

            𝑥4  =  {𝑢₁ ∗ 𝑣₁ ∗  
𝑁

𝑃
 + 𝑢₂ ∗  𝑣₂ ∗  

𝑁

𝑞
 } 𝑚𝑜𝑑 𝑁  

                  =  {10 ∗ 8 ∗ 31 +  26 ∗ 18 ∗ 19} 𝑚𝑜𝑑 589 

                  = 11372 𝑚𝑜𝑑 589  
                  =  181  
 

Finally, the original message must be among the 408, 67, 522 or 181. As a = 1, we take the 2 roots specified by a 

which are  x =  67, y =  181,  Now r =  
1

2
{1 + 

𝑥

𝑛
 } =  

1

2
{1 +  

67

589
 } =  0.556876  and  

s =
1

2
{1 +  

𝑦

𝑛
 }  =

1

2
{1 + 

181

589
 } =   0.653650. Now b = 0.556876 as r = b, message M = x = 67, so the Plaintext 

P= (M − Ks) = (67 − 24) = 43. (Sattar, et.al, 2015) showed an extended application of Michael O. Rabin 

Cryptosystem in the field of cryptography to steganography. In Michael O. Rabin cryptosystem produce four 

decryption results among one of them is correct and other three are pseudo results. In the steganography application, 

a benefit of the illusions messages generated from Rabin’s cryptosystem were taken by authors. Although, in 

cryptographic application, those three false results are considered as a weakness point of Rabin Cryptosystem owing 

to size problems. The authors in this articles turned Rabin Cryptosystem’s disadvantage to advantage in 

steganography which will be used not only constructing hiding map but also authenticated mechanisms which guide 

the hiding process. The authors of this article converted secret message into ASCII value and used it in Rabin 

encryption algorithm which gives the system encrypted message that will represent the input to the decryption 

algorithm. The procedure produce four message. One of them is secret message and the rest are illusion messages 

with a different length that constructs the map is as below: 

The pseudo code for determining Map 

𝑖 = 0  , 𝑊ℎ𝑖𝑙𝑒 (𝑚𝑖 <> 𝑐) 𝑑𝑜 , 𝐻𝑖𝑑𝑖𝑛𝑔 𝑚𝑎𝑝 = 𝑚𝑖 ,𝐸𝑛𝑑. Preparation of color cover image for hiding c is shown as 

follows. 

Hiding Algorithm:  

Input: Cipher message (Text)       

           Cover Image (Image)        

           Map (binary format)  

Output:  𝑆𝑡𝑒𝑔𝑜 − 𝑜𝑏𝑗𝑒𝑐𝑡   
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The Entire process follow some important steps.  

 Read secret message  

 Convert secret to binary format.  

 Read Cover color image and get three bands (Red, Green, Blue). 

 Convert all band of RGB to binary format.  

 Get based on Map (Output of decryption)  

 For each byte band do the following steps.  

 Prepare a Target address through the following equation.   

o 𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (𝑇)  =  (1 ∗  𝐾1  +  2 ∗  𝐾2  +  4 ∗  𝐾3) 𝑚𝑜𝑑 3 

o Replacing the target address bit with the secret bit message.   

 Go to step 6 until hide all the secret.  

 At the end gather all the bands to form 𝑠𝑡𝑒𝑔𝑜𝑜𝑏𝑗𝑒𝑐𝑡.   

 

Secret message 

 

Rabin(Encryption & Decryption) 

Algorithm 

 

        Cipher code 

Map 

 

 

Hiding Algorithm 

 

Cover Image 

Sender  

 

                                                               

Map 

 

𝑆𝑡𝑒𝑔𝑜𝑜𝑏𝑗𝑒𝑐𝑡 

 

 

Map   

    Secret message 

               Yes                  Rabin  decryption        

No                  Algorithm 

  Cipher Code 

 

 

Receiver  

Unauthenticate

d message 

Authenticated 

message 

Extracting Algorithm 

                               

Figure 2.4: The block diagram of the 𝑠𝑡𝑒𝑔𝑜𝑜𝑏𝑗𝑒𝑐𝑡 

It show a good result for guiding hiding mechanism and authentication mechanism. Both of the map and stegoobject 

will transmit through channel from sender to receiver which has shown in figure 8. When the receiver get both of 

them will start extract ciphertext and decrypt to get four message {m1, m2, m3, m4} here one of them is a secret 

message and rest are for constructing a map that will work as a guide for hiding mechanism and this can easy to 

filter because of having map available. If the extracted map matched the received one that is authenticated otherwise 

it rejects and this is easy to filter because of having map available.  

 

Matching 
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(Kaminaga, et.al. 2016) discussed a fault attack technique on modular exponentiation of Rabin’s encryption where a 

complicated situation arose in case of message reconstruction when message and the public key were not relatively 

prime. They also provided a rigorous algorithm to handle message reconstruction. They provided a fundamental idea 

about two attacks on crashing modulus on modular squaring for Rabin Cryptosystem. The attack are performed 

attacker when public key moves from nonvolatile memory to register byte by byte. Their assumption attacker can 

inject one byte fault into this moving process. Their simulation result shows that only 14.4% success rate in 

Transient attack and 54% success rate for injection attack for small prime which is actually negligible because real 

life prime number so big. Their attack models are as follows. 

 

Transient fault attack:  

Let 𝑍 {𝑎, 𝑏} be a set of integers in the interval {𝑎, 𝑏}. Assuming that the attacker can inject a transient fault that 

public key N modifies by byte, that is, the injected fault affects only one byte of the public key by modifying it 

randomly as follows: 𝑁ˆ =  𝑁 ⊕ 𝜖 𝑤ℎ𝑒𝑟𝑒 ⊕ is bitwise exclusive OR and 𝜖 =  𝑅𝑖  ∗  28𝑖, 𝑅𝑖  ∈  𝑍 {1, 28  −

 1} 𝑓𝑜𝑟 𝑖 ≠ 0 which is required to preserve the parity of 𝑁ˆ. Suppose the attacker knows the position i, but the 

correct value of the faulty public key Nˆ is unknown by the attacker. The attacker must factor 255 (=  28 −

 1) 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑁 ˆ. Attack also works for a fault that affects several bytes of N. However, the attacker’s task 

grows in proportion to the number of candidates Nˆ of perturbed N. This is a natural assumption for both WIPR and 

RAMON. In the WIPR case, the attack target is the time at which i-th byte 𝑁[𝑖] 𝑜𝑓 𝑁 moves from non-volatile 

memory to the register for multiplication before multiplying r and N.  

Instruction skipping attack: 

The second fault model is based on the instruction skip technique. Instruction skip is equivalent to replacing an 

instruction with a no operation in assembly language. Instruction skip does not affect the registers, internal memory, 

and calculation process. It is possible to reconstruct an entire secret exponent with 63(=26-1). Implementation with 

the 26-ary method using instruction skipping technique in pre-computation phase. Their attack target is a conditional 

branch operation for moving the last byte of N at the counter 𝑖 =  127. if the conditional branch operation is 

skipped, the attacker obtains the faulted public key ˆ N as follows: 

Nˆ = ∑ 𝑁[𝑖

126

𝑖=0

]28𝑖 … … … … … … … … … … . . 𝐸𝑞𝑢(18) 

Where each 𝑁[𝑖]  ∈  𝑍 (0,255). Clearly, Nˆ is one byte shorter than the original N, and preserves its parity. In this 

case, Nˆ is uniquely determine. Therefore, from the computational point of view, attack for this case is easier than 

the attack for the ‘crash a byte of N’ case. The notion of first attack model were actually derived from (Berzati, et.al., 

2008, Berzati,et.al., 2009). 

(Chandrakar, et.al. 2017) developed a secure two factor remote authentication scheme using the Rabin 

Cryptosystem, Claiming it to be secured against the man-in-middle attack, Replay attack, and active and passive 
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attack using BAN logic. They simulated the technique uses AVISPA tool. This authentication scheme reduces the 

various cost overhead and time complexity. This authentication scheme reduces the various cost overhead and time 

complexity.  It includes 5 phases are as follows.  

Step-1: System Setup Phase 

    The server S selects two large primes p, q, where 𝑝, 𝑞 ≡  3 𝑚𝑜𝑑 4. The server S evaluates 𝑁 =  𝑝 × 𝑞 and 

declares n as public key and (p, q) as private key. 

Step-2: Registration Phase 

Every new user needs to register with the server S to get the services/applications by executing the 

following steps: 

  User 𝑈𝑖 chooses random number R, identity 𝐼𝐷𝑖  and password 𝑃𝑊𝑖  He then computes  𝑅𝑃𝑊𝑖  =

 ℎ (𝐼𝑑𝑖  ǁ 𝑅 ǁ 𝑃𝑊𝑖  ) and submits {𝑅𝑃𝑊𝑖 ,  𝐼𝐷𝑖  } to the server S through a reliable channel.  

  Upon obtaining the message from 𝑈𝑖 , S generates a random nonce  𝑁𝑖 and 

evaluates 𝑀𝐾 =  ℎ (𝐼𝑑𝑖   ǁ 𝑝 ǁ 𝑞), 𝐴𝑖 =  𝑀𝐾 ⊕  ℎ (𝑅𝑃𝑊𝑖  ǁ 𝐼𝐷𝑖), 𝐶𝐼𝐷𝑖 =  𝐸 ℎ(𝑝 ǁ 𝑞) (𝐼𝐷𝑖  ǁ 𝑁𝑖) 𝑎𝑛𝑑 𝐵𝑖  =

ℎ (𝑅𝑃𝑊𝑖   ǁ 𝑀𝐾). The server S stores the values {𝐴𝑖 , 𝐵𝑖 , 𝐶𝐼𝐷𝑖 , 𝑛, ℎ (. )} into a smart card and transmits it to 

user 𝑈𝑖  through a reliable channel.  

  After getting the smart card from the server, 𝑈𝑖  calculates 

𝑅𝑁 = ℎ (𝐼𝐷𝑖  ǁ 𝑃𝑊𝑖  )  ⊕  𝑅 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒𝑠 𝑅𝑁 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑚𝑎𝑟𝑡 𝑐𝑎𝑟𝑑 

Step-3: Login Phase 

Whenever user 𝑈𝑖 wants to access the services of remote server, he needs to log into the system by executing 

the following steps: 

  𝑈𝑖 inserts smart card into a terminal and inputs 𝑃𝑊𝑖  𝑎𝑛𝑑 𝐼𝐷𝑖 . The smart card evaluates 

𝑅′ =  ℎ (𝐼𝐷𝑖  ǁ 𝑃𝑊𝑖)  ⊕  𝑅𝑁, 𝑅𝑃𝑊𝑖 ′ =  ℎ (𝐼𝐷𝑖  ǁ 𝑅′ ǁ  𝑃𝑊𝑖), 𝑀𝐾′ =  𝐴𝑖  ⊕  ℎ (𝑅𝑃𝑊𝑖 ′ ǁ 𝐼𝐷𝑖) and 𝐵𝑖 ′ =

ℎ (𝑅𝑃𝑊𝑖′ ǁ  𝑀𝐾′) and compares if 𝐵𝑖  =  𝐵𝑖 ′. If it is false, the smart card aborts the session; otherwise, 

executes the next step. 

  The smart card creates a random nonce 𝑅𝑐 and evaluates  𝑀𝑖 =  (𝑅𝑐 ǁ  𝑅𝑃𝑊𝑖  ǁ  𝐼𝐷𝑖  )2 mod 𝑛,   𝐽𝑖 =

 ℎ (𝑅𝑐 ǁ 𝑅𝑃𝑊𝑖  ǁ 𝐼𝐷𝑖  ),  𝐿𝑖  =  𝐽𝑖  ⊕  ℎ ( 𝑅𝑐 ǁ 𝐼𝐷𝑖  ) and 𝐾𝑖  =  ℎ (𝑀𝐾)  ⊕  𝑅𝑐. User 𝑈𝑖 sends the message 

{𝑀𝑖  ,  𝐿𝑖  , 𝐾𝑖  , 𝐶𝐼𝐷𝑖  } to server over an insecure channel. 

Step-3.1: Authentication and Key agreement phase  

  After getting the message { 𝑀𝑖 , 𝐿𝑖 , 𝐾𝑖 ,  𝐶𝐼𝐷𝑖  } from 𝑈𝑖  , the server decrypts             𝐶𝐼𝐷𝑖 , 𝑖. 𝑒. (𝐼𝐷𝑖  ǁ  𝑁𝑖)  =

 𝐷ℎ(𝑝 ǁ 𝑞)(𝐶𝐼𝐷𝑖) 𝑎𝑛𝑑 Checks the legitimacy of 𝐼𝐷𝑖 .  If 𝐼𝐷𝑖  is not valid, server S aborts the session else it 

calculates 𝑀𝐾 =  ℎ(𝐼𝐷𝑖  ǁ 𝑝 ǁ 𝑞), 𝑅𝑐′ = ℎ (𝑀𝐾)  ⊕  𝐾𝑖  𝑎𝑛𝑑 𝐽𝑖′ =  𝐿𝑖  ⊕  ℎ (𝑅𝑐 ǁ 𝐼𝐷𝑖). 
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  The server decrypts the message 𝑀𝑖 with the help of private key {p, q} and obtains four root values 

{𝑃1, 𝑃2, 𝑃3, 𝑃4}. 𝑆 𝑐ℎ𝑒𝑐𝑘𝑠 𝑖𝑓 𝐽𝑖′ =  ℎ(𝑃𝑘), where 𝑘 =  1 𝑡𝑜 4. If it is false, S aborts the session; else, the 

server believes 𝑈𝑖 is legal and performs next step. 

  The server produces a random nonce 𝑅𝑠 and calculates 

𝑇𝑖  =  ℎ (𝑅𝑠 ǁ 𝑀𝐾), 𝐶𝐼𝐷𝑖
𝑛  =  𝐸ℎ (𝑝 ǁ 𝑞) (𝐼𝐷𝑖  ǁ 𝑅𝑠 )𝑎𝑛𝑑 𝑅𝑠𝑐  =  𝑅𝑠  ⊕  𝑅𝑐 . Server transmits 

{𝑅𝑠𝑐, 𝑇𝑖 , 𝐶𝐼𝐷𝑖
𝑛 } 𝑡𝑜 𝑢𝑠𝑒𝑟 𝑈𝑖  over an untrustworthy channel. 

  Upon obtaining the reply message {𝑅𝑠𝑐, 𝑇𝑖 , 𝐶𝐼𝐷𝑖
𝑛 } 𝑓𝑟𝑜𝑚 𝑆, the smart 𝑐𝑎𝑟𝑑 calculates 𝑅𝑠′ =  𝑅𝑠𝑐   ⊕

  𝑅𝑐  , 𝑇𝑖′ =  ℎ (𝑅𝑠′ ǁ 𝑀𝐾) and checks if  𝑇𝑖′ =  𝑇𝑖 . If it holds, the user 𝑈𝑖 trusts the server as legitimate 

one. User calculates the session key 𝑆𝐾 =  ℎ (𝑅𝑠 ǁ 𝑅𝑐  ǁ 𝑀𝐾 ǁ 𝐼𝐷𝑖) 𝑎𝑛𝑑 𝑍𝑖  = ℎ( 𝑆𝐾 ǁ 𝐼𝐷𝑖). The user 

transmits 𝑍𝑖 to S and replaces 𝐶𝐼𝐷𝑖  𝑤𝑖𝑡ℎ 𝐶𝐼𝐷𝑖
𝑛 in smart card.  

  After receiving 𝑍𝑖 from 𝑈𝑖 , the server enumerates 𝑆𝐾 =  ℎ (𝑅𝑠 ǁ 𝑅𝑐 ǁ 𝑀𝐾 ǁ 𝐼𝐷𝑖  ),  𝑍𝑖′ =  ℎ(𝑆𝐾 ǁ 𝐼𝐷𝑖) and 

checks  𝑖𝑓 𝑍𝑖  =  𝑍𝑖′. If it is true, both parties can communicate using this session key SK. 

Step-4: Password Change Phase 

 The smart card reader checks the legitimacy of user 𝑈𝑖 by performing the Step 1 of login   phase. 

 The user inputs a new password 𝑃𝑊𝑖
𝑛𝑒𝑤  and calculates 𝑅𝑃𝑊𝑖

 𝑛𝑒𝑤  =  ℎ ( 𝐼𝐷𝑖  ǁ  𝑅′ ǁ  𝑃𝑊𝑖
 𝑛𝑒𝑤) , 𝐴𝑖

𝑛𝑒𝑤   =

𝐴𝑖  ⊕  ℎ (𝑅𝑃𝑊𝑖  ǁ 𝐼𝐷𝑖) ⊕  ℎ ( 𝑅𝑃𝑊𝑖
 𝑛𝑒𝑤  ǁ 𝐼𝐷𝑖), 𝐵𝑖

𝑛𝑒𝑤 =  ℎ(𝑅𝑃𝑊𝑖
 𝑛𝑒𝑤  ǁ 𝐴𝑖 ⊕ ℎ (𝑅𝑃𝑊𝑖  ǁ 𝐼𝐷𝑖) and   

𝑅𝑁𝑛𝑒𝑤  =  𝑅𝑁 ⊕  ℎ (𝐼𝐷𝑖  ǁ 𝑃𝑊𝑖) ⊕ ℎ (𝐼𝐷𝑖  ǁ 𝑃𝑊𝑖
 𝑛𝑒𝑤  ).  

  The smart card reader stores new values {𝐴𝑖
𝑛𝑒𝑤  , 𝐵𝑖

𝑛𝑒𝑤  , 𝑅𝑁𝑛𝑒𝑤} in place of old values {𝐴𝑖, 𝐵𝑖 , 𝑅𝑁} in the 

smart card. The password update phase is successfully completed. 

 

(Dong, et.al. 2017) modified Rabin’s cryptosystem using cubic residue technique which successfully removed the 

long cherished inconsistency so called four to one function in Rabin’s cryptosystem.  But, it was insecure against 

chosen cipher text attack that was pointed out by authors. Interestingly, the novel method of computing cubic root 

from a cubic residue prohibited the revealing private key. It is a modification of the Rabin Cryptosystem based on 

cubic residues Definition 1. If there exists an integer x such that 𝑥3  ≡  𝛼 𝑚𝑜𝑑 𝑁, 𝑤ℎ𝑒𝑟𝑒 𝛼 𝜖 𝑍 𝑎𝑛𝑑 (𝛼, 𝑁)  =  1, α 

is called a cubic residue modulo N. Lemma 1: Suppose that p is a prime and 3 | (𝑝 − 1), then α is a cubic residue 

modulo p iff  𝛼
(𝑝 − 1)

3   ≡ 1 (𝑚𝑜𝑑 𝑝).  

Lemma 2: Let P ≡ 2 (mod 3) and q ≡ 4 (mod 9) or 7 (mod 9) be primes, 𝑁 = 𝑝 ∗ 𝑞. Then α is a cubic residue 

modulo 𝑁 = 𝑝 ∗ 𝑞 if and only if α is a cubic residue modulo q. When constructing a quadratic residue y modulo 𝑁 =

𝑝 ∗ 𝑞, y should be a quadratic residue both modulo p and modulo q. However, choosing proper p and q make easier 

to construct a cubic residue modulo 𝑁 = 𝑝 ∗ 𝑞 than to construct a quadratic residue modulo 𝑁 = 𝑝 ∗ 𝑞 by Lemma 2. 

Theorem 1: Let, P ≡ 2 (mod 3) and q ≡ 4 (mod 9) or 7 (mod 9) be primes, 𝑁 = 𝑝 ∗ 𝑞 and δ a cubic residue 

http://dx.doi.org/10.29322/IJSRP.29.12.2019


Publication Partner: 

International Journal of Scientific and Research Publications (ISSN: 2250-3153) 

http://dx.doi.org/10.29322/IJSRP.29.12.2019                                                                                                                                                39 

            

modulo N. Then  𝛿3𝑑  ≡  𝛿 (mod N) where 𝑑 =
{2( 𝑝 −1)(𝑞 – 1)+3}

9
, if q ≡ 4 (mod 9) and 𝑑 =

{( 𝑝 −1)(𝑞 − 1) +3}

9
  if q ≡  7 

(mod 9).  A 3𝑙  𝑡ℎ root of δ could be efficiently computed as mod 𝜏 ≡  𝛿𝑑𝑙
 (𝑚𝑜𝑑 𝑁).  

Algorithm for Key Setup: 

Alice performs the following steps in order to get her private key and public key:  

 choose two random prime numbers p and q such that P ≡ 2(mod 3) and q ≡ 4 (mod 9) or 7(mod 9) and  

p ᴝ q; 

 Compute 𝑁 = 𝑝 ∗ 𝑞, 

 Publicize N as her public key, and keep (p, q) as her private key. 

Algorithm for Encryption: 

The sender Bob computes ciphertext (c) = m
3 
(mod N) in order to send a confidential message m to Alice. 

Algorithm for Decryption: Alice computes c
d
 (mod N) in order to decrypt the 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 c, where 𝑑 =

2 ( 𝑝 −1)(𝑞 − 1) +3

9
  , If q ≡ 4 (mod 9) and d= 

 ( 𝑝 −1)(𝑞 − 1) +3

9
   if q ≡ 7(mod 9).   In fact, 𝑐𝑑 ≡  𝑚3𝑑 ≡  𝑚 (𝑚𝑜𝑑 𝑁) by 

Theorem 1.  

A workout Example: Alice chooses prime numbers 𝑝 = 41 𝑎𝑛𝑑 𝑞 = 31, then computes 1271 =  𝑝 ∗  𝑞 =  𝑁 

is her public key, and (𝑝, 𝑞)  =  (41, 31) is her private key. Suppose that Bob send a confidential message 𝑚 =

1000 to Alice. He computes 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑐 = 10003 (𝑚𝑜𝑑 1271)  = 78. After receiving the 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 c= 78, 

Alice computes 𝑑 =
2 ( 𝑝 −1)(𝑞 − 1) +3

9
= 267,  𝑐𝑑 = 78267 ≡ 7840∗6+27 ≡ 16 mod (41), and 78267 ≡  8 (𝑚𝑜𝑑 31). 

Then she uses the CRT to get the plaintext that is  𝑚 = 16 ∗ 4 ∗ 31 –  8 ∗ 3 ∗ 41 = 1000 𝑠𝑖𝑛𝑐𝑒 1 = 4 ∗ 31 − 3 ∗ 41.  

(Awad, et.al. 2018) proposed a deterministic method depending on the domain of Gaussian Integer to select right 

plaintext among four decryptions result. Recipient can decide particular plain text form four possible decryption 

result by selecting obtained square root with redundancies in its imaginary part (a + bi). This is the main benefit of 

using Gaussian integer technique. The disadvantage, on the other hand, same cyphertext can be generated from 

different plaintext due to having modular reduction arithmetic. For example, for the four plaintext (𝑚)  =

 {13, 20, 57, 64}, the same cipher text c=15. 

The following algorithm is for computing the Gaussian square roots of the Gaussian quadratic residues modulo p.  

Algorithm for computing the square roots modulo Gaussian Primes: 

There are two possible forms for the message m ∈ A (N). The first form is 𝑚 = 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈  𝑍 𝑤𝑖𝑡ℎ  𝑏 ≠

 0, while the second form is 𝑚 =  𝑎 𝑤ℎ𝑒𝑟𝑒 𝑎 ∈  𝑍 which is similar to that in the domain of natural integers. In this 

modification, the first case was considered when 𝑚 =  𝑎 + 𝑏𝑖 with b ≠ 0. To find the Gaussian square roots of the 

Gaussian quadratic residues 𝑐 =  𝑥 +  𝑦𝑖  in A (p) is not any easy problem although it could be solved by 
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generalizing the algorithms used to find square roots from 𝑍𝑁 𝑡𝑜 𝑍[𝑖].  The following algorithm for computing the 

Gaussian square roots of the Gaussian quadratic residues modulo p. 

Step-1: ( 
𝑐

𝑝
 ) = −1, if c is not quadratic residue modulo p.  

Step-2:  Compute the inverse 𝑐−1 (𝑚𝑜𝑑 𝑝) by the e-Euclidean algorithm in 𝑍[𝑖]. 

Step-3: Write  𝜑 (𝑝)  = 2𝑠𝑡  where t is an odd integer. 

Step-4: Select a quadratic non residue integer 𝑏 = 𝑥𝑙 + 𝑦𝑖
𝑙 modulo p ∃ 𝑏 ∈  𝑅 (𝑝). 

Step-5: 𝑆𝑒𝑡 𝑥 ≡  𝑏′(𝑚𝑜𝑑 𝑝) 𝑎𝑛𝑑 𝑟 ≡  𝑐
(𝑡+1)

2  (𝑚𝑜𝑑 𝑝). 

Step-6: For i = 1 … … … … … … . 𝑠 − 1  

 Compute 𝛿 ≡  (𝑟2 ∗ 𝑐−1)2𝑠−𝑖−1 (𝑚𝑜𝑑 𝑝).  

 If𝛿 ≡  −1 (𝑚𝑜𝑑 𝑝)𝑡ℎ𝑒𝑛 𝑠𝑒𝑡 𝑟 ≡  𝑟 ∗  𝑥 (𝑚𝑜𝑑 𝑝), 𝑎𝑛𝑑 𝑥 ≡  𝑥2(𝑚𝑜𝑑 𝑝). 

 If 𝛿 ≡  1(𝑚𝑜𝑑 𝑝), 𝑡ℎ𝑒𝑛 𝑟𝑒𝑝𝑒𝑎𝑡 𝑤𝑖𝑡ℎ 𝑎 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖.  

Step-7: 𝑅𝑒𝑡𝑢𝑟𝑛 (𝑟, − 𝑟) 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝.  

Public and private keys generation algorithm:  

 Generate two large random and distinct Gaussian primes p and q, each roughly the same size and of the 

form 4𝑘 + 3.  

 Compute 𝑁 =  𝑝 ∗  𝑞.  

 The public-key is N and A
l 
s private-key is (𝑝, 𝑞). 

Messages Encryption Algorithm:  

 Obtain A’s authentic public-key N, and choose the plaintext message as a Gaussian integer m ∈ A (N).  

 Compute 𝑡ℎ𝑒 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑐 ≡  𝑚2 (𝑚𝑜𝑑 𝑁), and send it to entity A. 

Ciphertext Decryption Algorithm:  

 Use the Chinese Remainder Theorem to find the four square roots m1, m2, m3, and m4 of c modulo N.  

 Entity A decides which of these the original message m is by selecting the obtained square root with 

redundancies in its imaginary part. 

A workout example: Let 𝑝 =  1051 𝑎𝑛𝑑 𝑞 =  1031 be two randomly chosen Gaussian integers of the form 

4𝑘 + 3, then 𝑁 =  1083581. The public-key is 1083581 and A’s private-key is the pair integer (1051, 1031). The 

number of different choices for the message m is equal to the order of the complete residue system modulo N, which 

is | 𝐴 (𝑁)| =  1174147783561, Let   m =  101011 +  111111𝑖, then the ciphertext is c= 𝑚2 ≡  891018 +

486027𝑖 (mod 1083581). To decrypt the Cypher message, an entity A should uses the private keys p and q including   

above algorithm, and the 𝐶ℎ𝑖𝑛𝑒𝑠𝑒 Remainder Theorem over Z[i] to find the four square roots:  
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𝑚1 = 101011 + 111111i, 𝑚2  = 428923 + 461094i, 𝑚3 =  654658 +  622487i, and  

𝑚4 =  982570 +  972470i.  

An entity A knows that the original message is m1 by checking the redundancy of the imaginary part of obtaining 

four square roots where the only one of them whose imaginary part contains a redundancy is m1. 

(Bhatt, et.al. 2018) extended a deterministic technique adding duplicating bits at the beginning of plaintext before 

encryption. Added replicating bits reflected within one decrypted text among four possible plaintext. The annoying 

thing is other three false result that refers to time complexity and memory complicity.   

Key Generating Algorithm: 

Input: Let f be the f-bit-size of the secret parameter.  

Output: The private key p1,  𝑝2 and the public key N.   

 First select two random prime numbers 𝑝1 𝑎𝑛𝑑 𝑝2 such that 2𝑓  <  𝑝1, 𝑝2  <  2𝑓+1 and  𝑝1 , 𝑝2 are in the 

form of 4𝑘 + 3 where k is any positive integer.  

 Calculate 𝑁 =  𝑝1 × 𝑝2  

 Calculate two integers 𝛼1, 𝛼2 such that  𝛼1 × 𝑝2  +  𝛼2 × 𝑝2  =  1  

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 (𝑝1, 𝑝2) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑁.  

 

Deterministic Rabin Encryption Algorithm: 

Input: 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦: 𝑁, 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡: 𝑚1 

Output: 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶  c1   

 Select integer 0 <  𝑚1 <  𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝐺𝐶𝐷 (𝑚1, 𝑁)  =  1   

 Convert the message m1 into binary form and pad the digit with the LSB  

 Compute 𝑐1  ≡  (𝑚1)2 𝑚𝑜𝑑 𝑁 

 Return the ciphertext c1. 

 

For the decryption of the ciphertext, Deterministic Rabin cryptosystem is used.  The input of this algorithm is 

ciphertext and key pair and output the original plaintext. The decryption takes more time compared to encryption 

because; we used Chinese Remainder Theorem to find all possible plaintext. CRT takes more time to find the 

solution of set of congruent equations. 

Deterministic Rabin Decryption Algorithm: 

Input: Private Key: (p1, p2), Ciphertext: c1  

Output: Plaintext: m1  
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Step-1: Calculate r1  ≡  c1

(p1+1)

4
  (mod p1)  

Step-2: Calculate r2  ≡  c2

(p2+1)

4
  (mod p2)  

Step-3: Calculate x1 ≡  (a1 × p1 × r2  +  a2 × p2 × r1) mod N   

Step-4: Calculate x2 ≡  (a1 × p1 × r2 − a2 × p2 × r1) mod N  

Step-5: Calculate x3 ≡ − x2 (mod N)   

Step-6: Calculate x4 ≡ − x1 (mod N)  

Step-7: Among x1, x2, x3, x4 return the message having redundancy that is our original plaintext. 

A workout example: 

A real example uses prime numbers from 512 to 1024 bits long, similar to that used in RSA. For understanding 

purpose, we have taken small values. Let p1 and p2 are prime numbers and m1 is message. The example of proposed 

scheme is as follows: Let 𝑝1  =  7, 𝑝2  =  11 and message (𝑚1)  =  3, public key 𝑁 =  𝑝1 × 𝑝2  =  7 × 11 =  77 

and then calculate (−3)  × 7 +  2 × 11 =  1, 𝑎1 =  −3 𝑎𝑛𝑑 𝑎2 =  2, since m1 is two bit message, whose bits are 

replicated to give 4 bits, till the number 63. Range of message is from 1 to 76, so redundancy of this type will work. 

Plaintext in binary form is written as (11)2 or (3)10. This replication gives (1111)2 or (15)10. Ciphertext is 𝑐1  =

 (𝑚1)2 𝑚𝑜𝑑 77 =  71. The decryption process is as follows. 

𝑟1 =  712 𝑚𝑜𝑑 7 =  1 𝑎𝑛𝑑 𝑟2 =  713 𝑚𝑜𝑑 11 =  4 , finally 

𝑥1 =  ((−3)  × 7 × 4 +  2 × 11 × 1) 𝑚𝑜𝑑 77 =  15 

𝑥2  =  ((−3) × 7 × 1 –  2 × 11 × 4) 𝑚𝑜𝑑 77 =  29. 

Two square root among four square roots are x1 and x2, and the rest two are x3 = –x1 mod 77 = 62, x4 = –x2 mod 77 = 

48, hence, four square roots in binary formats: 1510 = 11112, 2910 = 111012, 6210 = 1111102, 4810 = 1100002 

The required redundancy is possible in 1510 only, so number returned by the Deterministic Rabin machine is 1510. 

The redundant bits are 112 or 310, which is original plaintext message.  Deterministic Rabin Cryptosystem is similar 

to Rabin Cryptosystem but only difference between them is that, in Rabin Cryptosystem, there are four answers 

from which any one of them is correct. Therefore, Rabin cryptosystem is non-deterministic. It produces four answer 

and can be ascertained the correct result by checking the redundancy of the answer in binary form or by using 

repeated binary pattern like (11 11)2.  

(Gani, 2019) performed study over Rabin and RSA Cryptosystem and provided insightful discussion. The 

computation speed of RSA and Rabin’s Cryptosystem were roughly same. Both algorithm’s security relied on prime 

integer factorization.  
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(Mahad, et.al. 2015) proposed an efficient method to overcome four to one mapping problem of Rabin cryptosystem 

by reducing the phase   space of plaintext from 𝑀 ∊  𝕫𝑝𝑞 𝑡𝑜 𝑀 ∊  22𝑛−2, 22𝑛−1 ⊂  𝕫𝑝𝑞  where 𝑁 = 𝑝 ∗ 𝑞 is a product 

of 2 strong primes 𝑝 ∗ 𝑞 ∊  22𝑛, 22𝑛+2. They calculated public key 𝑁 = 𝑝2 ∗ 𝑞 as like as Okamoto-𝑈𝑐ℎ𝑖𝑦𝑎𝑚𝑎’𝑠 

scheme in 1998 and Schmidt-Samoa 2006. Private Key 𝑑 = 𝑝 ∗ 𝑞,  

Key generation:  

Input: The size n-bit of the prime numbers.  

Output:  A public key 𝑁 =  𝑝2 ∗ 𝑞  and the private key 𝑑 = 𝑝 ∗ 𝑞, 

 Generating two random and distinct n-bit strong primes p and q satisfying       𝑝 ≡  3 𝑚𝑜𝑑 4, 22𝑛  <  𝑝 <

 22𝑛+2 , 𝑞 ≡  3 𝑚𝑜𝑑 4, 22𝑛  <  𝑞 <  22𝑛+2  

 𝑆𝑒𝑡 𝑁 =  𝑝2 ∗ 𝑞 𝑎𝑛𝑑 𝑑 = 𝑝 ∗ 𝑞. 

Encryption:  

Input: A public key 𝑁 = 𝑝2 ∗ 𝑞  and the plaintext M 

Output: 𝑇ℎ𝑒 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝐶. 

 Plaintext is an integer 𝑀 ∊ 22𝑛 − 2, 22𝑛−1  ⊂  𝕫𝑝𝑞 

 Compute 𝐶 ≡  𝑀2 (𝑚𝑜𝑑 𝑁) 

Decryption:   

Input:  the private key tuple (𝑑, 𝑝, 𝑞) and the 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 C  

Output: The plaintext M. 

Step-1: Computation 𝑉 ≡  𝐶 (𝑚𝑜𝑑 𝑑). 

Step-2: Solving square root of V via CRT utilizing the private key pair (𝑝, 𝑞). 

Step-3: Return 4 possible plaintext M1, M2, M3 and M4 

Step-4: For 𝑖 = 1 𝑡𝑜 4 compute Wi =
𝐶−𝑀𝑖

2

𝑁
 

Step-5: Return the plaintext 𝑀𝑖 which produces 𝑊𝑖  ∊  𝕫 

Proof of correctness begin with the following lemma.  

Lemma 1: Let public key N = p2 ∗ q  and d = p ∗ q, Choose x ∊  𝕫d. If 

y ≡  x2 (mod N)and V ≡  y (mod d), then V ≡  x2 (mod d) Proof of lemma 1:  

y =  x2 + Nk1 where k1  ∊  𝕫 … … … … … … … … … Equ. (19) 

v = y + dk2 where k2  ∊  𝕫 … … … … … … … … … … Equ. (20) 
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From Equ.(19, 20), we can write an equation v = x2 + Nk1 + dk2  and finally v ≡  x2 mod d. Proposition 2: 

Let C be an integer representing a cipher text encrypted by the          Rabin–RZ scheme. Then C ≡  M2 (mod N) has 

a unique solution for M. 

Proof of proposition 2: 

Let begin with the proof of correctness of the decryption procedure. Since M ∊ 𝕫 d, we will obtain all 4 roots of V by 

solving  𝑉 ≡  𝐶 (𝑚𝑜𝑑 𝑑) using the CRT and also by lemma 1, indeed 𝑣 ≡  𝑀2 (𝑚𝑜𝑑 𝑑) Furthermore, since M∊ 𝕫 d 

and d < N, certainly one of the root is a solution for 𝐶 ≡  𝑀2 (𝑚𝑜𝑑 𝑁). We now proceed to prove the uniqueness. 

We rewrite the congruence relation as the equation C ≡ M
2
 (mod N) as 𝐶 ≡  𝑀2 − 𝑁𝑡 with 𝑡 ∊  𝕫, 𝑀1 ≠

𝑀2 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖 =  1, 2  𝑀𝑖  < 22𝑛−1. Then 𝑀1
2 − 𝑁𝑡1 = 𝑀2

2 − 𝑁𝑡2 , using N=  𝑝2 ∗ 𝑞, this leads to 𝑀1
2 − 𝑀2

2 =

(𝑡1 − 𝑡2)𝑁 

Case 1: 𝑡1 − 𝑡2| (𝑀1
2 − 𝑀2

2). The probability that 𝑡1 − 𝑡2| (𝑀1
 2 − 𝑀2

 2) and not equal to zero is 2−𝑛. Conversely, the 

probability that 𝑡1 − 𝑡2| (𝑀1
 2 − 𝑀2

 2)  and equal to zero is 1 −
1

2𝑛. Thus 𝑀1
 2 = 𝑀2

 2 is with the probability is 1 −
1

22𝑛 

and since  M ∊ 22𝑛−2. 22𝑛−1. Then 𝑀1 = 𝑀2, hence the equation 𝐶 =  𝑀2 − 𝑁𝑡 has only one solution.  

Case 2: 𝑁| (𝑀1 + 𝑀2)(𝑀1 − 𝑀2).  The condition that should be satisfied is either one of the following conditions. 

pq |(𝑀1 ± 𝑀2)  p2 |(M1 ± M2) 

or 

p |(M1 ± M2) q |(M1 ± 𝑀2)  

Observe that p ∗ q, 𝑝2 > 22𝑛 𝑤ℎ𝑖𝑙𝑒 M1 ± M2 < 2. 22𝑛−1 = 22𝑛 . This implies that either condition is not possible. 

A workout example: 

The scenario is an entity A will send its public key to other entity B. B will encrypt. A choses Prime p=100669, 

q=69859 and compute 𝑁 = 𝑝2 ∗ 𝑞 = 707968400363899 𝑎𝑛𝑑 𝑑 = 7032635671, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑀 = 1439948310 

519659206359828 ≡  14399483102 (𝑚𝑜𝑑 707968400363899) 𝑎𝑛𝑑 Sends to A. A decrypts the message by 

computing 3691358296 ≡ 519659206359828 mod 7032635671 .Then A uses the CRT and its private key S to 

compute the four square roots of 3691358296 𝑚𝑜𝑑𝑢𝑙𝑜 𝑑 those are  

 M1=3890433108, M2=1439948310, M3=5592687361, M4=3142202563. 

Then, to determine the correct message A computes 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 4: 

𝑊𝑖 =
𝐶 − 𝑀𝑖

2

𝑁
… … … … … 𝐸𝑞𝑢(21) 

In this example only M2 produces 𝑊 ∊ 𝕫. 
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(Srivastava, et.al. 2013) presented analysis of Michael O. Rabin cryptosystem with the help of Chinese Reminder 

Theorem. Also, redundancy schemes for decryptions technique was mentioned and some basic mathematical 

concepts was explained and finally compared with RSA cryptosystem in terms of security and efficiency. The 

following descriptions for redundancy.  

Redundancy schemes for unique decryption:  

To ensure that decryption returns the correct message it is necessary to have some redundancy in the message, or 

else to send some extra bits. We can use following four solutions to overcome this problem. 

Redundancy in the message for Rabin: For example, insist that the least significant l bits (where l > 2 is some known 

parameter) of the binary string m are all ones. If l is big enough then it is unlikely that two different choices of 

square root would have the right pattern in the l bits. A message m is encoded as 𝑥 =  2𝑙𝑚 + (2𝑙  −  1), and so the 

message space 𝑖𝑠 𝑀𝑘  =  {𝑚: 1 ≤  𝑚 <  
𝑁

2𝑙 , 𝑔𝑐𝑑(𝑁, 2𝑙 ∗ 𝑚 +  (2𝑙  −  1)) = 1}, alternatively, 𝑀𝑘 ={0,1}𝜅−𝑙−2. The 

ciphertext is 𝑐 =  𝑥2 (𝑚𝑜𝑑 𝑁).  Decryption involves computing the foursquare roots of c. If none, or more than one, 

of the roots has all l least significant bits equal to one and so corresponds to an element of 𝑀𝑘then decryption fails 

(return ⊥). Otherwise the output the message  𝑚 = ⌊
𝑥

2𝑙⌋ . 

A workout example: 

Public key=  𝑁 = 𝑝 ∗ 𝑞 = 77, Private Key p=7, Private Key q=11 

Let message 𝑚 = 1510 = 11112  

Left most bit=112 = 310 >2 and Right most bit =112 =310, 

Encoding message 𝑥 =  2𝑙 ∗ 𝑚 +  (2𝑙  –  1) = 23 ∗ 15 + (23 − 1) = 127  

                               𝑥2 = 1272 𝑚𝑜𝑑 77 = 36 = 𝑐 

Decryption involves computing the foursquare roots of c.  

Computation of two square roots 𝑆𝑟1 = 36
7+1

4  𝑚𝑜𝑑 7 = ±1 ,     𝑆𝑟2 = 36
11+1

4  𝑚𝑜𝑑 11 = ±5 

Calculating two 𝑏𝑒𝑧𝑜𝑢𝑡’𝑠 coefficient using extended Euclidean Algorithm that is  𝑎 = −3 𝑎𝑛𝑑 𝑏 = 2 

Chinese Remainder theorem gives four roots (𝑋1, 𝑋2, 𝑋3, 𝑋4) by combing private key and their coefficient with two 

square roots  

𝑥1 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 5 + 11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 = 7110 

𝑥2 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −5 + 11 ∗ 2 ∗ −1)𝑚𝑜𝑑 77 = 610 

𝑋3 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 5 − 11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 = 2710 
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𝑋4 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −5 − 11 ∗ 2 ∗ −1)𝑚𝑜𝑑 77 = 5010 

𝑋1 = 7110 = 71,35,17,8,4,2,1 = 10001112 

𝑋2 = 610 = 6,3,1 = 1102 

𝑋3 = 2710 = 27,13,6,3,1 = 110112 

𝑋4 = 5010 = 50,25,12,6,3,1 = 1100102 

If none, or more than one of the roots has all l least significant bits equal to one and so corresponds to an element of 

𝑀𝑘 then decryption fails (return ⊥). Otherwise the output the message    𝑚 =  𝑓𝑙𝑜𝑜𝑟 ⌊
127

23 ⌋ = 15 which is desired 

plaintext.  

Rabin padding scheme: 

Public key=  𝑁 = 𝑝 ∗ 𝑞 = 77, Private Key 𝑝 = 7, Private Key 𝑞 = 11, message  𝑚 = 510 = 1012 by padding 

another 510 the message extend to 𝑚 = 1011012  which is equivalent to 4510 

Encryption: C=45
2
 mod 77=23 

Decryption: Decryption involves computing the foursquare roots of c. Computation of two square roots.                  

𝑆𝑟1 = 23
7+1

4  𝑚𝑜𝑑 7 = ±4,       𝑆𝑟2 = 23
11+1

4  𝑚𝑜𝑑 11 = ±1 

Calculating two bezout’s coefficient using Extended Euclidean Algorithm that is a=-3 and b=2. Chinese Remainder 

theorem gives four roots(X1, X2, X3, X4) by combining private key and their coefficient with two square roots.   

𝑋1 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 1 + 11 ∗ 2 ∗ 4) 𝑚𝑜𝑑 77 = 6710 

𝑋2 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −1 + 11 ∗ 2 ∗ −4)𝑚𝑜𝑑 77 = 1010 

𝑋3 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 1 − 11 ∗ 2 ∗ 4) 𝑚𝑜𝑑 77 = 4510 

𝑋4 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −1 − 11 ∗ 2 ∗ −4)𝑚𝑜𝑑 77 = 3210 

Find the replicating bit after decimal to binary conversation 

𝑋1 = 6710 = 67,33,16,8,4,2,1 = 10000112 

𝑋2 = 1010 = 10,5,2,1 = 10102 

𝑋3 = 4510 = 45,22,11,5,2,1 = 1011012 

𝑋4 = 3210 = 32,16,8,4,2,1 = 1000002 

Only root 𝑋3 showing replicating bit. To retrieve original message, we have to remove replicating bit and reveal 

message m=510 
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Extra bits for Rabin:  

Send two extra bits of information to specify the square root. For example, one could send the value 𝑏2 = (𝑚
𝑁

) of the 

Jacobi symbol (the set {−1, 1} can be encoded as a bit under the map 𝑥 → 7 (𝑥 + 1)/2), together with the least 

significant bit b2 of the message. The cipher text space is now 𝐶𝑘 = (𝑍
𝑁𝑍⁄ )

∗
⨯ {0,1}2 and, for simplicity of 

exposition, 𝑀𝑘 = (𝑍
𝑁𝑍⁄ )

∗
. These two bits allow unique decryption, since (

−1
𝑁

) = 1, m and N-m have the same 

Jacobi symbol and if m is odd then N-m is even. Indeed during using the CRT to compute square roots then one 

computes  𝑚𝑝 𝑎𝑛𝑑 𝑚𝑞 such that  (
𝑚𝑝

𝑝
) = (

𝑚𝑞

𝑞
) =1. Then decryption using the bits 𝑏1, 𝑏2 is: If 𝑏1  =  −1 then the 

decryption is ±𝐶𝑅𝑇 (𝑚𝑝, 𝑚𝑞) and if 𝑏1  =  −1 then solution is ± 𝐶𝑅𝑇 (−𝑚𝑝, 𝑚𝑞). This scheme is close to optimal 

in terms of cipher text expansion and decryption never fails. The drawbacks are that the cipher text contains some 

information about the message, and encryption involves computing the Jacobi symbol, which typically requires far 

more computational resources than the single squaring modulo N. 

A workout example: 

Public key=  𝑁 = 𝑝 ∗ 𝑞 = 77, Private Key p=7, Private Key q=11, message 𝑚 = 15, Root selection bit  

b1 =  m mod  2 = 15(2) = 1 

Message identification bit b2 = (
𝑚

𝑁
) = (

15

77
) = (

15

7
) (

15

11
) = (

1

7
) (

4

11
) 

                                                      =  1
7−1

2  𝑚𝑜𝑑 7 ∗  ( 2
11−1

2  𝑚𝑜𝑑 11)
2

= 1,  

Encipher c=15
2
 mod 77=71 

Then decryption using the bits 𝑏1, 𝑏2 after computing the four square roots of c.  

Computation of two square roots 𝑆𝑟1 = 71
7+1

4  𝑚𝑜𝑑 7 = ±1 ,     𝑆𝑟2 = 71
11+1

4  𝑚𝑜𝑑 11 = ±4 

(
1

7
) = 1 and (

4

11
) = ( 2

11−1

2  𝑚𝑜𝑑 11)
2

= 1.Therefore (
𝑆𝑟1

𝑁
) = (

𝑆𝑟2

𝑁
) = 1 

Calculating two bezout’s coefficient using Extended Euclidean Algorithm that is 𝑎 = −3 𝑎𝑛𝑑 𝑏 = 2. Chinese 

Remainder theorem gives four roots (𝑋1, 𝑋2, 𝑋3, 𝑋4) by combing private key and their coefficient with two square 

roots  

𝑥1 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 4 + 11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 = 1510 

𝑋2 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 + 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −4 + 11 ∗ 2 ∗ −1)𝑚𝑜𝑑 77 = 6210 

𝑋3 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ 4 − 11 ∗ 2 ∗ 1) 𝑚𝑜𝑑 77 = 4810 

𝑋4 = (𝑝 ∗ 𝑎 ∗ 𝑆𝑟2 − 𝑞 ∗ 𝑏 ∗ 𝑆𝑟1)𝑚𝑜𝑑 𝑁 = (7 ∗ −3 ∗ −4 − 11 ∗ 2 ∗ −1)𝑚𝑜𝑑 77 = 2910 

Now select two roots specified by bit 𝑏1 = {𝑋1, 𝑋4} = {15,29} 

Now compute Jacobi symbol of both of them. 
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 (15
77

) = (15
7

)(15
11

) = (1
7
)( 4

11
) = 1 ∗  ( 2

11−1

2  𝑚𝑜𝑑 11)
2

= 1 ∗ (−1)2 = 1 

(
29

77
) = (

29

7
) (

29

11
) = (

1

7
) (

7

11
) = 1 ∗ (−1) = −1 

As we can see Jacobi symbol (15
77

) is equivalent to 𝑏2. Therefore original message 𝑚 = 15  is retrieved. Let 

𝑁 =  𝑝 ∗ 𝑞 𝑤ℎ𝑒𝑟𝑒 𝑝, 𝑞 ≡  3 (𝑚𝑜𝑑 4) If p ≡ ±q (mod 8) then (𝑁2) =  −1. Hence, for every 1 ≤  𝑥 <  𝑁 exactly 

one of 𝑥, 𝑁 −  𝑥, 2𝑥, 𝑁 −  2𝑥 is a square modulo N. Without loss of generality we therefore assume that p ≡ 3 (mod 

8) and q ≡ 7 (mod 8). The integer N is called a Williams integer in this situation. Williams [629] suggests encoding a 

message 1 ≤  𝑚 <  𝑁/8 −  1 (alternatively, 𝑚 ∈ 𝑀𝑘  =  {0, 1}𝑘−5) as an integer x such that x is even and 

(
𝑥

𝑁
) =  1 (and so 𝑥 𝑜𝑟 − 𝑥 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁) by 

𝑥 = 𝑝(𝑚) = {
4(2𝑚 + 1)        𝑖𝑓𝑓 (

2𝑚 + 1

𝑁
) = 1    

2(2𝑚 + 1)      𝑖𝑓𝑓 (
2𝑚 + 1

𝑁
) = −1

… … … … … … … … 𝐸𝑞𝑢. (22) 

The encryption of m is then 𝑐 =  𝑃 (𝑚)2 (𝑚𝑜𝑑 𝑁). One has 𝐶𝑘  =  (𝑍/𝑁𝑍 )∗. To decrypt one computes square 

roots to obtain the unique even integer 1 <  𝑥 <  𝑁 such that (
𝑥

𝑁
) = 1 and x

2
 ≡ c (mod N). If 8 | 𝑥 then decryption 

fails (return ⊥). Otherwise, return m = (x/2 − 1)/2 if x ≡ 2 (mod 4) and m = (x/4 − 1)/2 if x ≡ 0 (mod 4).Unlike the 

extra bits scheme, this does not reveal information about the cipher text. It is almost optimal from the point of view 

of cipher text expansion. But it still requires encrypter to compute a Jacobi symbol otherwise loses performance 

advantage of Rabin over RSA. The Rabin cryptosystem with the Williams padding is sometimes called the Rabin-

Williams cryptosystem.  

A workout example: Assume that 𝑝1  ≡  3 (𝑚𝑜𝑑 8) 𝑎𝑛𝑑 𝑝2  ≡  7 (𝑚𝑜𝑑 8). The integer N is called a Williams 

integer in this situation. Hence 𝑃1 = 8𝑘 + 3 = 11 where 𝐾 = 1 … … … … … 𝑝1 − 1 and 𝑝2 = 8𝑘 + 7 = 23, 𝑁 = 𝑝 ∗

𝑞 = 253, 𝐾 = 1 … 𝑝2 − 1. 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑚 =  13. Williams’s suggesting encoded message space  1 ≤  m <
𝑁

8
− 1  as 

an integer x such that x is even and (
𝑥

𝑁
) =  1 (and 𝑠𝑜 𝑥 𝑜𝑟 − 𝑥 is a square modulo N) by 

𝑥 = 𝑝(𝑚) = {
4(2𝑚 + 1)    𝑖𝑓𝑓 (

2𝑚 + 1

𝑁
) = 1   

2(2𝑚 + 1)      𝑖𝑓𝑓 (
2𝑚 + 1

𝑁
) = −1

… … … … … … . 𝐸𝑞𝑢. (23) 

(
2𝑚+1

𝑁
) = (

2∗13+1

253
) = (

27

11
) (

27

23
) = (

5

11
) (

4

23
) =  5

11−1

2  𝑚𝑜𝑑 11 ∗ ( 4
23−1

2  𝑚𝑜𝑑 23)
2

= 1    

𝐶 = 𝑋 = p(m)2mod N =  4(2 ∗ 13 + 1) = (108)2𝑚𝑜𝑑 253 = 26 
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Decryption Process: 

To decrypt, one has to compute square roots to obtain the unique even integer 1<x<N such that 

 (
𝑥

𝑁
)  =  1 𝑎𝑛𝑑 𝑥2 ≡ 𝑐 (𝑚𝑜𝑑 𝑁).  

Root 𝑐1 = 𝐶
11+1

4  𝑚𝑜𝑑 11 = 9 𝑎𝑛𝑑  Root 𝑐2 = 𝐶
23+1

4  𝑚𝑜𝑑 23 = 16. Now find two Bezout’s coefficient from 

Extended Euclidean algorithm prime 𝑝1, 𝑝2 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎 = −2 𝑎𝑛𝑑 𝑏 = 1 𝑎𝑛𝑑 𝑎𝑝𝑝𝑙𝑦 𝑡ℎ𝑜𝑠𝑒 𝑡𝑜 𝐶𝑅𝑇. 

x1= (11 ∗ −2 ∗ 16 + 23 ∗ 1 ∗ 9)𝑚𝑜𝑑 253 = 108 

𝑥2 = 253 − 108 = 145 

𝑥3 = (11 ∗ −2 ∗ 16 − 23 ∗ 1 ∗ 9)𝑚𝑜𝑑 253 = 200 

𝑥4 = 253 − 200 = 53 

The Jacobi symbol has to be computed after selecting even roots X1 and X3 among four tuple is as follows- 

(
𝑋1

𝑁
) = (

108

253
) = (

108

11
) (

108

23
) = (

9

11
) (

16

23
) = (

32

11
) (

42

23
) 

         = (3
11−1

2  𝑚𝑜𝑑 11)
2

∗ (4
23−1

2  𝑚𝑜𝑑  23)
2

= 1  

Since we achieve positive Jacobi symbol, we do not need to calculate other one.   

If 8 | X1 then decryption fails (return ⊥). Otherwise, return expected message  

𝑚 =  (𝑋1/2 −  1)/2    𝑖𝑓𝑓  𝑋1  ≡  2 (𝑚𝑜𝑑 4) 𝑎𝑛𝑑  

 𝑚 =  (𝑋1/4 −  1)/2    𝑖𝑓𝑓  𝑋1  ≡  0 (𝑚𝑜𝑑 4). 

Since 108≡ 0 (mod 4).  Message m = 
(

𝑌1
4

−1)

2
=

(
108

4
−1)

2
=

26

2
= 13  retrieved. 

 

2.3 Michael O. Rabin Signature Scheme 

The Rabin signature algorithm in Cryptography is a method of digital signature originally proposed by Michael O. 

Rabin in 1979. The Rabin signature algorithm was one of the first digital signature schemes proposed, and it is the 

only one that relates to the hardness of forgery directly to the problem of integer factorization. The Rabin signature 

algorithm is existentially unforgeable in the random oracle model assuming the integer factorization problem is 

intractable. The Rabin signature algorithm is also closely related to the Rabin Cryptosystem. The security of Rabin 

signature relies on difficulties of integer factorization.  

Unique Signature Algorithm: 

𝐻 (𝑚) 
𝑝−1

2   𝑚𝑜𝑑 𝑝 = 1 𝑎𝑛𝑑 𝐻 (𝑚) 
𝑞−1

2   𝑚𝑜𝑑 𝑞 =  1 , where hash function H is collision resistant if it is hard to 

finds that hash to the same output. If H is a collision resistant hash function which does not mean that no collision 
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exists, simply that they are hard to find. The cryptographic hash function is any mathematical equation. Message m 

is being hashed (encrypted). The hash value 1 generates by using private key p and q. The same hash value from 

different hashed input is so called collision resistant.  

The signature S is given by the following equation. 

𝑆 =  ((𝑝𝑞−2 𝐻 (𝑚) 
𝑞 + 1

4   𝑚𝑜𝑑 𝑞) 𝑝 +  (𝑞𝑝−2 𝐻 (𝑚) 
𝑝 + 1

4   𝑚𝑜𝑑 𝑝) 𝑞) 𝑚𝑜𝑑 (𝑝𝑞) 

Verification by 𝐻 (𝑚)  = 𝑠2 𝑚𝑜𝑑 𝑁, 𝑤ℎ𝑒𝑟𝑒 𝑁 =  𝑝 ∗ 𝑞. The signature can be verified by everyone as N is public 

key.  

The workout example: 

Assuming that p=7 and q=11 using 4k+3 prime formation. The public key N= 𝑝 ∗ 𝑞 =  77.  The ℎ𝑎𝑠ℎ𝑒𝑑 message 

𝐻(𝑚) = 202 𝑚𝑜𝑑 77 = 15 coming from 13
2
 mod 77. Let us see collision resistant hash value 15 

7−1
2   𝑚𝑜𝑑 7 =

1 𝑎𝑛𝑑 15 
11−1

2   𝑚𝑜𝑑 11 =  1 that is vulnerable in collision attack because a collision attack on cryptographic hash 

tries to find two inputs producing same Hash value.  

Signature S= (( 7
11−2 ∗ 15

11+1
4  mod 11) ∗ 7 +(117−2 ∗ 15

7+1
4  mod 7) ∗ 11 ) mod 77 

= (6 ∗ 7 +  2 ∗ 11) 𝑚𝑜𝑑 77 = 64 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 

Signature verification: H (m) =s
2
 mod 77=64

2
 mod 77=15. 

Since H((m)=H(m), the signature is valid and accepted by verifier. 

Pairing Signature Algorithm-1:  

It is insecure without hash function. 

Key Generation:  

 The signer S chooses two primes p, q and computes  𝑛 =  𝑝 ∗  𝑞 . S chooses a random 𝑏( 0 ≤ 𝑏 < 𝑁 )  

 The public key is (𝑁, 𝑏). 

 The private key is (𝑝, 𝑞). 

Signing: 

 To sign a message m the signer S picks random padding U and calculates (𝑚 ∗ 𝑈)𝑚𝑜𝑑 𝑁 𝑎𝑛𝑑 Solves the 

equation 𝑥 ( 𝑥 +  𝑏 )𝑚𝑜𝑑 𝑁 = ( 𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁. 

 If there is no solution S picks a new pad U and tries again. 

 Else the signature on m is the 𝑝𝑎𝑖𝑟 (𝑈, 𝑋)  
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Verification:  

Given a message m and a signature (U, X) the verifier V calculates the equality of X(X +  b) mod N and (m ∗

U) mod N. if equality is found, the signature is accepted as valid.  

A workout example: Assuming that Private keys are p = 7 ∗ q = 11 using     4k + 3 prime formation, public 

keys are N = p ∗ q = 77 and b = 2. The m is the hash value of H(x)  = 132 mod 77 = 15, Let random padding 

u = 13, x = 13 those are suited for the following equation. Attempts are continue until they are equal. 

𝑥(𝑥 +  𝑏) 𝑚𝑜𝑑 𝑁 

⇒ 15 (15 + 2) 𝑚𝑜𝑑 77 

= 24 

𝑀 ∗ 𝑈 𝑚𝑜𝑑 𝑁  

⇒  (15. 17) 𝑚𝑜𝑑 77 

= 24 

The equation is solvable that is why the signature on m is the pair (17,15) 

Verification message:  

The verifier checks the equality by calculating x(x + b) and (m ∗ U) mod N. If x(x +  b) mod N = (m ∗

U) mod N, the signature (17, 15) on m is valid and accepted.  

Pairing Signature Algorithm-2: 

It is secure with hash function. In most presentations in modern terminology the algorithm is simplified by choosing 

b = 0. The algorithm relies on a collision-resistant hash function H: {0, 1}∗  →  {0, 1}k. The hash function H with k 

output bits is assumed to be a random oracle (certain decision problem is solved by single operation) and the 

algorithm works as follows:  

Key Generation: 

 The signer S chooses primes p, q  and computes the product N =  p ∗ q   

 The public key is N. 

 The private key is (p, q). 

Signing:  

 Signer S picks random padding U to sign a message m and calculates  

     H (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁. S then solves the equation 𝑥2  =  𝐻 (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁. 

 If there is no solution S picks a new pad U and try again.  

 Else the signature on m is  (𝑈, 𝑋)  
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Verification:  

Given a message m and a signature (U, X) the verifier V calculates equality of x2 mod N and H (m ∗ U) mod N. If 

equality is found, the signature is accepted as valid.  

A workout example:  

Assuming that Alice wants send a secret information(X = 20) to Bob using valid signature. She first hashes the 

secret by m2 mod N = 202 mod 77 = 15 where N is a composite number of two secret private keys are moduli 

p=7, moduli q=11, both are Blum prime (4k+3). Public key or modulus N = p ∗ q = 7 ∗ 11 = 77. The hashed value 

15 will be used to generate signature. Signing: (15, 25, 12) to do that first signer S chooses number U 

probabilistically and see the value of random oracle modulo N matches any quadratic residue modulo N. This 

process continue until both sides of the equation match the hash. Let U = 25 for that 15 ∗ 25 mod 77 = 67 and now 

take such x value for which quadratic residue 67 can be obtained. 

m ∗ U mod N = 15 ∗ 25 mod 77 = 67 

 

X2 mod N =  122 mod 77 = 67 

Now both sides are equal so the verifier accepts the signature as valid, 

 

2.3.1 Existing Research on Michael O. Rabin Signature Scheme 

Rabin signature of a message m may consist of single or 𝑝𝑎𝑖𝑟 (𝑚, 𝑆). However, if 𝑥2  =  𝑚 𝑚𝑜𝑑 𝑁 has no solution, 

this signature cannot be directly generated. To overcome this obstruction, a random pad U was proposed by 

(Pieprzyk, et.al. 2003) and attempts are repeated until 𝑥2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁 is solvable and thus the signature is the 

triple (m, U, S). A verifier compares m*U mod N with S
2
 and accepts the signature as valid when these two numbers 

are equal. (Williams, 1980) devised a modification of the Rabin system which allows the cryptographer to decide 

definitively which of the four square roots the original message is. The security of Rabin-Williams’s signature 

system rely on finding difficulties of square roots. But it did not offer multiple signature facilities in single 

document. It avoids the forgery vulnerability. While that scheme requires the use of two primes respectively 

congruent to 3 and 7 modulo 8. Moreover in the Rabin-Williams scheme, a message cannot be signed twice in two 

different ways, otherwise the factorization of N might get exposed. (Elia, et.al. 2011& 2012) presented a 

modification of H. C. William scheme based on the computation of a Jacobi symbol, where deterministic pad used 

for two purposes is as follows. 

Signing using deterministic pad-1:  

The following deterministic pad calculation method for non Blum prime when m is QNR. When m is not quadratic, 

we use Jacobi Symbol to compute suitable pad and obtain quadratic residues modulo p and q. The quadratic 
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equation 𝑥2 =  𝑚 𝑚𝑜𝑑 𝑁 is solvable if and only if m is a quadratic residue modulo N and that m is also quadratic 

residue modulo p and modulo q.    

f1  =  
𝑚1

2
{1 − (

𝑚1

𝑝
)} +

1

2
{1 + (

𝑚1

𝑝
)} … … . . 𝐸𝑞𝑢(24) 

f2 =  
𝑚2

2
{1 − (

𝑚2

𝑞
)} +

1

2
{1 + (

𝑚2

𝑞
)} … … . . 𝐸𝑞𝑢(25) 

𝑚 =  {𝑚1𝜓1  +  𝑚2𝜓2 }𝑚𝑜𝑑 𝑁 … … … … . . 𝐸𝑞𝑢(26) 

𝑥2 = ( 𝑚1𝜓1   +  𝑚2𝜓2 ) ( 𝑓1 𝜓1  +  𝑓2 𝜓2 ) =  (𝑓1𝑚1𝜓1  +  𝑓2𝑚2𝜓2) 𝑚𝑜𝑑 𝑁, where 𝑓1 𝑚1 𝑎𝑛𝑑 𝑓2 𝑚2 is a 

quadratic residue modulo p and modulo q respectively, since (
𝑚1

𝑝
) =(

𝑓1

𝑝
) ,  (

𝑚2

𝑞
) = (

𝑓2

𝑞
) so that 

 (
𝑚1𝑓1

𝑝
) = (

𝑚1

𝑝
) (

𝑓1

𝑝
) = 1,  (

𝑚2𝑓2

𝑞
) = (

𝑚2

𝑞
) (

𝑓2

𝑞
) = 1 

𝑈 =  𝑅2{𝑓1 𝜓1  +  𝑓2 𝜓2} … … … 𝐸𝑞𝑢(27) 

A workout example: Assuming that Alice wants to send a secret information (x= 97) to Bob using valid 

signature. She first hashes the secret by 𝑥2 𝑚𝑜𝑑 𝑁 = 972 𝑚𝑜𝑑 377 = 361 where N is a composite number of two 

secret private keys that is moduli p=13, moduli q=29, public key or modulus 𝑁 = 𝑝 ∗ 𝑞 =  13 ∗ 29 = 377. The 

hashed value 361 will be used to generate signature.  

 𝑚1 = 361 𝑚𝑜𝑑 13 = 10, 𝑚2 = 361 𝑚𝑜𝑑 29 = 13 

The Legendre symbol (
10

13
) is quadratic residue =  +1 

1
2 

mod 13=1, 2
2 

mod 13= 4, 3
2 

mod 13=9, 4
2 

mod 13= 3, 5
2 

mod 13=12, 6
2 

mod 13=10, 7
2 

mod 13=10, 8
2 

mod 

13=12, 9
2 

mod 13=3, 10
2 

mod 13=9.  11
2 

mod 13=4, 12
2 

mod 13=1. 13
2 

mod 13=0 that is why calculation is done up 

to p-1. Hence, 10 over 13 is a quadratic residue under modulo 13 that exactly appears twice.  

The Legendre symbol (
13

29
)  is quadratic non residue = -1 

1
2 

mod 29=1, 2
2 

mod 29= 4, 3
2 

mod 29=9, 4
2 

mod 29= 3, 5
2 
mod 29=12, 6

2 
mod 29= 7, 7

2 
mod 29=20, 8

2 
mod 29=6, 

9
2 

mod 29=23, 10
2 

mod 29=13. 11
2 
mod 29=5, 12

2 
mod 29=28, 13

2 
mod 29=24, 14

2 
mod 29=22, 15

2 
mod 29= 22, 15

2 

mod 29=24, 17
2 

mod 29= 28, 18
2 

mod 29=5, 19
2 

mod 29=13,20
2 

mod 29=23, 21
2 

mod 29=6, 22
2 

mod 29=20, 23
2 

mod 29=7. 24
2 

mod 29=25, 25
2 

mod 29=16, 26
2 

mod 29=9, 27
2 

mod 29=4, 28
2 

mod 29=1, 13 over 29 is a quadratic 

non residue under modulo 29 that exactly appears once. Now using Equ.( 24, 25, 26, 27) the following signature 

generated mathematics is calculated.   

f1 =   
10

2
{1 − (

10

13
)} +

1

2
{1 + (

10

13
)} =

10

2
{1 − 1} +

1

2
{1 + 1} = 11 

f2  =  
13

2
{1 − (

13

29
)} +

1

2
{1 + (

13

29
)} =

13

2
{1 − (−1)} +

1

2
{1 + (−1)} = 13 
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𝑚 =  𝑚1𝜓1 + 𝑚2 𝜓2 𝑚𝑜𝑑 𝑁 = 10 ∗ 117 + 13 ∗ (−116) 𝑚𝑜𝑑 377 

                                                 = −338(377) = 377 − 338 = 39 

𝑋2 =  (𝑚1𝜓1 + 𝑚2 𝜓2)(𝑓1 𝜓1  +  𝑓2 𝜓2) =  (𝑓1𝑚1𝜓1  +  𝑓2𝑚2𝜓2) 𝑚𝑜𝑑 𝑁 

                                                                     =  1 ∗ 10 ∗ 117 + 13 ∗ 13 ∗ (−116)  

                                                                     =  −18434 𝑚𝑜𝑑 377 

                                                                     =  (377 ∗ 49) − 18434 

                                                                      = 18473 − 18434 = 39 

The deterministic padding factor is as follows.  

𝑈 =  𝑅2{𝑓1 𝜓1  +  𝑓2 𝜓2}  = 12{1 ∗ 117 + 13(−116)} 𝑚𝑜𝑑 377  

    =  −1391(377) =  (377 ∗ 4) − 1391 =  1508 − 1391= 117. 

S is the solution of the equation 𝑥2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁 =  39 ∗ 17 (377)  = 39 

Signed message: (39, 117, 39) 

Verification:  

The Signer S verify the equation x2  = (m ∗ U) mod N =  39 ∗ 117 (377)  = 39.  Since L. H. S (39)  =

 R. H. S (39), so the signature is valid for message 97. This is deterministically true as X2 pre-calculated but 

probabilistically there is no such x value for which the  x2  = (m ∗ U) mod N is true.  

Signing using deterministic pad-2: The followings are deterministically pad calculation method for 

Blum prime (4k+3) when m is QNR.       

𝑓1  = (
𝑚1

𝑝
) … … . 𝐸𝑞𝑢(28) ,           f2 = (

𝑚2

𝑞
) … … … … … 𝐸𝑞𝑢(29) 

𝑚 =  {𝑚1𝜓1  +  𝑚2 𝜓2 }𝑚𝑜𝑑 𝑁 … … … … … 𝐸𝑞𝑢(30) 

𝑥2 = ( 𝑚1𝜓1   +  𝑚2𝜓2 ) ( 𝑓1 𝜓1  +  𝑓2 𝜓2 ) =  (𝑓1𝑚1𝜓1  +  𝑓2𝑚2𝜓2) 𝑚𝑜𝑑 𝑁, where 𝑓1 𝑚1 𝑎𝑛𝑑 𝑓2 𝑚2 is a 

quadratic residue modulo p and modulo q respectively, since (
𝑚1

𝑝
) =(

𝑓1

𝑝
) ,  (

𝑚2

𝑞
) = (

𝑓2

𝑞
) so that   (

𝑚1𝑓1

𝑝
) =

(
𝑚1

𝑝
) (

𝑓1

𝑝
) = 1,  (

𝑚2𝑓2

𝑞
) = (

𝑚2

𝑞
) (

𝑓2

𝑞
) = 1,      𝑈 =  𝑅2{𝑓1 𝜓1  +  𝑓2 𝜓2} … … … … … 𝐸𝑞𝑢(31) 

S is the solution of the equation 𝑥2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁 

Signed message: {𝑚, 𝑈, 𝑆} 

Verification: equation 𝑠2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁, the signature is valid if and only if equation is true.  
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A workout Example: Assuming that Alice wants to send a secret information (x=20) to Bob using valid 

signature. She first hashes the secret by 𝑋2 𝑚𝑜𝑑 𝑁 = 202 𝑚𝑜𝑑 77 = 15 where N is a composite number of two 

secret private keys those are moduli p=7, moduli q=11, public key or modulus 𝑁 = 𝑝 ∗ 𝑞 = 7 ∗ 11 = 77. The 

hashed value 15 will be used to generate signature. Now using Equ.(28, 29, 30, 31), the following problem has been 

solved. 

m1 = 15 mod 7 = 1, m2 = 15 mod 11 = 4, f1 = (
1

7
) = 1, 

First let’s check whether 1 over 7 is a quadratic residue or not?  For that purposes, we have to check from 1 to p-1. 

1
2 

mod 7=1, 2
2 

mod 7= 4, 3
2 

mod 7=2, 4
2 

mod 7= 2, 5
2 

mod 7= 4, 6
2 

mod 7= 1. It’s clear that 1 over 7 is a quadratic 

residue modulo 7. 

f2= (
4

11
) = (

2

11
) (

2

11
) = (-1) (-1) = 1, According to Legendre symbol first let’s check whether 2 over 11 is a quadratic 

residue or not?  For that purposes, we have to check from 1 to p-1. 1
2 
mod 11=1, 2

2 
mod 11= 4, 3

2 
mod 11=9, 4

2 
mod 

11= 5, 5
2 

mod 11= 3, 6
2 

mod 11= 3, 7
2 

mod 11=5, 8
2 

mod 11= 9, 9
2 

mod 11=4, 10
2 

mod 11= 1.
 
 It’s clear that 2 over 

11 is not a quadratic residue modulo 11. 

𝑚 =  𝑚1𝜓1 +  𝑚2𝜓2 𝑚𝑜𝑑 𝑁 = 1 ∗ 22 +  4(−21) 𝑚𝑜𝑑 77 =  15 

𝑥2 = ( 𝑚1𝜓1   +  𝑚2𝜓2 ) ( 𝑓1 𝜓1  +  𝑓2 𝜓2 ) =  (𝑓1𝑚1𝜓1  +  𝑓2𝑚2𝜓2) 𝑚𝑜𝑑 𝑁 

    =  {1 ∗ 1 ∗ 22 + 1 ∗ 4 ∗ (−21) }𝑚𝑜𝑑 77 = 15 

𝑈 =  𝑅2{𝑓1 𝜓1  +  𝑓2 𝜓2} = 12{1 ∗ 22 + 1 ∗ (−21)}  = 1, Choose such R value for which m*U mod N equal to 

x
2
(pre-calculated).  

Signed message: {15, 1 𝑎𝑛𝑑 15} where S is the solution of the equation 𝑥2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁. In this 

circumstances we do not need to find such x value to solve the equation 𝑥2  = (𝑚 ∗ 𝑈) 𝑚𝑜𝑑 𝑁 as this method is 

deterministic. But it was needed to find such X value if it would be probabilistic. Verification: equation  𝑠2  = (𝑚 ∗

𝑈) 𝑚𝑜𝑑 𝑁., the signature is valid if and only if the equation is true.  = 15 ∗ 1 𝑚𝑜𝑑 77 = 15, 𝑆2 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑋2 

which value 15 is already computed. Since 𝐿. 𝐻. 𝑆 = 𝑅. 𝐻. 𝑆, Hence the signature is accepted as valid.  

Using a deterministic pad as above, allows different signatures of the same document. It is vulnerable to forgery 

attacks. It is relatively easy to compute S
2 

mod N, choose any message 𝑚′ and compute multiplicative inverse of 𝑚′ 

(hash value of m), compute 𝑈′ =  𝑆2 ∗  𝑚′−1 𝑚𝑜𝑑 𝑁 and forge the signature as (𝑚′−1
, 𝑈′, 𝑠) without knowing the 

factorization of N. The following variant countering the forgery attack or vulnerability of Rabin’s signature. 
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Signed Message: (𝑚, 𝑈 ∗ 𝑅2 𝑚𝑜𝑑 𝑁, 𝑆 ∗ 𝑅3 𝑚𝑜𝑑 𝑁, 𝑅4 𝑚𝑜𝑑 𝑁), so the signature is four tuple where U is padding 

factor and R is a random number selection, Here S is the x’s value for which equation 𝑥2  = (𝑚 ∗

𝑈) 𝑚𝑜𝑑 𝑁 𝑖𝑠 𝑡𝑟𝑢𝑒. It is clearly seen that x and U both unknown number which has to be chosen by entity A in order 

to generate signature. 

Verification: Verifier computes (𝑆 ∗ 𝐾3)2 𝑚𝑜𝑑 𝑁 and (𝑚 ∗ 𝑈 ∗ 𝑅2 ∗ 𝑅4) 𝑚𝑜𝑑 𝑁 and accept the signature is valid if 

and only if aforesaid two number is equal.  

A workout example: Assuming preprocessed 𝑚′ = 15, 𝑈 ∗ 𝑅2  = 25 ∗ 32 𝑚𝑜𝑑 77 = 71, 𝑆 ∗ 𝑅2 = 12 ∗ 32 =

108 𝑚𝑜𝑑 77 =  48 𝑎𝑛𝑑 34 𝑚𝑜𝑑 77 =  4. So the signature (15, 71, 48, and 4) is four tuple. The verification 

computations is as follows 

 (12*3
3
)

2
 mod 77= (12

2
*3

6
) mod 77= 25 and 

 15*25*3
2

*3
4
 mod 77=25   

Counter forgery 4-tuple signature (15, 71, 48, and 41) verification is successful, so the signature is valid and 

accepted 

(Elia, et.al, 2013) Described also a crypto intensive technique on Rabin cryptosystem based on Group isomorphism. 

It is in combination of Homomorphism and 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛 . A possible solution is to use a function 𝜕 defined from ZN 

into a group G of the same order, and define a function 𝜕1 such that 𝜕1 (x1) = 𝜕(x2). The public key consists of the 

two functions 𝜕 and 𝜕1. At the encryption stage, both are evaluated at the same argument, the message m and the 

minimum information necessary to distinguish their values is delivered together with the encrypted message. The 

decryption operations are obvious. The true limitation of this scheme is that 𝜕 must be a one-way function, 

otherwise two square roots that allow us to factor N can be recovered as in the residuosity subsection. This 

approach come to exits that given N, let 𝑃 =  µ𝑁  +  1 computes smallest prime using Mobius function that 

certainly exists by 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡’𝑠 theorem (Apostol, 1976) that is congruent 1 modulo N. Let g be a primitive element 

generating the multiplicative group Z∗
P. 

Define 𝑔1 = 𝑔µ and 𝑔2 = 𝑔µ(ψ1−ψ2), and as usual let m denote the message. 

Public key: {N, P, g1, g2} 

Encryption stage: C, b0, d1, d2, p1, p2} where C =  m2 mod N, b0  =  m mod 2, p1 is a position in the binary 

expansion of g1
m mod p, whose bit d1 is different from the bit in the corresponding position of the binary expansion 

of g2
m mod p, and p2 is a positioning the binary expansion of g1

m mod p, whose bit d2 is different from the bit in 

the corresponding position of the binary expansion of 𝑔2
−𝑚 𝑚𝑜𝑑 𝑝. 
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Decryption stage: 

- compute, as in (3), the four roots, written as positive numbers,  

- take the two roots having the same parity specified by b0, say z1 and z2,  

- Compute A =𝑔1
𝑧1 𝑚𝑜𝑑 𝑝 and B = 𝑔1

𝑧2 𝑚𝑜𝑑 𝑝  

- Between z1 and z2, the root is selected that has the correct bits d1 and d2 in both the given positions p1 and p2 of the 

binary expansion of A or B.The algorithm is justified by the following Lemma. 

Lemma 6. The power g0 = g
µ 

generates a group of order N in 𝑍𝑝
∗ , thus the correspondence 𝑥 ↔  𝑔0

𝑥 establishes an 

isomorphism between a multiplicative subgroup of 𝑍𝑝
∗   and the additive group of  𝑍𝑁

∗ .  

 

A workout example:  

An isomorphism (Homomorphism +  bijection) establishes a mathematical mapping or operation between 

multiplicative subgroup of integer Zp and additive group of integer ZN
∗

. These are multiplicative subgroup G
*
7 and 

G
*
11 what have been introduced in appendix C. It is being seen that each row is permutation of other row except first 

row. Simply we can say two mathematical objects are isomorphic if an isomorphism exists among them. The 

additive group of composite number has been shown in appendix C.  

According to pre-definition, Let 𝑝 = 7, 𝑞 = 11, 𝑁 = 77, 𝑃 =  µ𝑁 +  1 =  µ (7∗11) + 1 

=  (−1)2  + 1 = 2, 1st
 Generator of group 𝑔1 =  𝑔µ 𝑎𝑛𝑑 1st

 Generator of group 𝑔2 =  𝑔µ (22+21)  =  𝑔µ (43)  = 𝑔−1 

and 𝑚 = 13 denoted the message. 

Public key: {77, 2, 𝑔1, 𝑔2}. 

Encryption stage: {C, b0, d1, d2, p1, p2}, where C = 13
2
 mod 77=15, b0 = 13 mod 2=1, 

P1=g1
m
 mod P= 3

13
 mod 2= 1,     d1= g2

m
 mod P = (3

-1
)

13
 mod 2=1. 

P2= g1
m
 mod P = 2

13
 mod 2= 0,    d2= g2

-m
 mod P = (3

-1
)

-13
 mod 2=3

13
 mod 2=1 

Decryption stage: Step (1, 2) is expressed by congruence law .  

Step-1: 
77

7
 V1 ≡ 1 mod 7→ 11 V1 ≡ 1 mod 7→ 2 V1 ≡ 1 mod 7→ V1 = 2  

Step-2: 
77

11
 V2 ≡ 1 mod 11→7 V2 ≡ 1 mod 11→ (-3)V2 ≡ 1 mod 11→V1 = 8 

 

The following roots are deterministic polynomial time for Blum prime.   

 𝑎1 = 𝐶(
𝑝+1

4
) 𝑚𝑜𝑑 𝑝 = 152 𝑚𝑜𝑑 7 = 1 

𝑎2 = 𝐶(
𝑞+1

4
) 𝑚𝑜𝑑 𝑞 = 153 𝑚𝑜𝑑 7 = 9                                             

  𝑎3 = 𝑝 − 𝑎1 = 7 − 1 = 6 

(𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑎1) 

  𝑎4 = 𝑞 − 𝑎2 = 11 − 9 = 2 

(𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑎2) 

[ + + ]                          [ - - ] 

Now according to CRT, Four roots are calculated as follows.  
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Step-1: [+ +]   Z ≡ 1 mod 7 and Z ≡ 9 mod 11 

                         𝑍1  = {𝑎1  ∗  𝑉1  ∗
𝑁

𝑝
+  𝑎2  ∗  V2  ∗  

𝑁

𝑞
}    mod N   

                               = {1 ∗  2 ∗
77

7
+  9 ∗  8 ∗  

77

11
 } mod 77 = 527 mod 77 = 64   

 

Step-2: [- -]    Z ≡ 6 mod 7 and Z ≡ 2 mod 11 

                      𝑍2  = {𝑎3  ∗  𝑉1  ∗
𝑁

𝑝
+  𝑎4  ∗  V2  ∗  

𝑁

𝑞
}    mod N   

                            = {6 ∗  2 ∗
77

7
+  2 ∗  8 ∗  

77

11
 } mod 77 = 244 mod 77 = 13   

 

Step-3: [+ -]    Z ≡ 1 mod 7 and Z ≡ 2 mod 11 

                       𝑍3  = {𝑎1  ∗  𝑉1  ∗
𝑁

𝑝
+  𝑎4  ∗  V2  ∗  

𝑁

𝑞
  }  mod N   

                             = {1 ∗  2 ∗
77

7
+  2 ∗  8 ∗  

77

11
 } mod 77 = 134 mod 77 = 57   

 

Step-4: [- +]    Z ≡ 6 mod 7 and Z ≡ 9 mod 11 

                        𝑍4  = {𝑎2  ∗  𝑉1  ∗
𝑁

𝑝
+  𝑎3  ∗  V2  ∗  

𝑁

𝑞
 }   mod N   

                              = {6 ∗  2 ∗
77

7
+  9 ∗  8 ∗  

77

11
  } mod 77 = 636 mod 77 = 20   

 

Choose two roots specified by b0 and rearrangement them as first small root for small group and larger root for larger 

group. Those are (Z2, Z3) = (13, 57). 

Computations:  

A = 𝑔1
𝑧2 mod P, A =3𝑧2 mod P = 313 𝑚𝑜𝑑 2 =  1 (this is for small group) 

B = 𝑔1
𝑧3 mod P  =257mod 2 = (28)7 ∗ 21 𝑚𝑜𝑑 2 =  0 (this for larger group). It is clearly seen that A matches to 

d1 since P1 and d1 are one to one correspondence. Hence, Z2=13 is our plaintext. 

(Sidorov,et.al., 2015) described a bug into implementation of Rabin-Williams digital signature in crypto++ 

framework which is a popular cryptographic framework. The bug is the misuse of blinding technique that is aimed at 

preventing timing attack on the digital signature system implementation. To fix the 𝑏𝑢𝑔𝑑𝑜𝑜𝑟𝑠 one should ensure 

that the value used for blinding is a quadratic residue modulo p and q. This conditions guarantees that the blinding 

value will be removed at the unbinding step and won’t affect the result of the signing procedure. Although the 

authors of crypto++ aimed at improving the security of the Rabin-Williams signature system implementation but 

eventually made the system completely insecure admitted by authors themselves.  The Rabin-Williams signatures 
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become more efficient from state-of-the-art modular –root signature system which was far beyond the simple 

signature system introduced by (Bernstein, 2008). 

(Jaweria, et.al. 2017) proposed a secure gateway discovery protocol using Rabin Signature Scheme in MANET that 

ensures confidentiality goal in heterogeneous environments. Registration process was included to remove the 

malicious nodes. This protocol removes the threat of anti-confidentiality, anti-authentication and anti-duplication. 

The efficiency of this protocol is shown through AVISPA tool. 

(Chaoyang, et, al.,2017) proposed an efficient ID-based signature scheme based on Rabin’s cryptosystem by using 

the forking lemma theorem. This scheme has less exponential operations, it is secure against existential forgery 

under adaptively chosen identity and message attacks in the random oracle model.  

(Bleichenbacher, 2004)] presented a method to compress Rabin signature. Rabin signatures and compressed 

signatures are equally difficult to forge. Compression requires a continued fraction expansion and takes time 

𝑂(𝑙𝑜𝑔(𝑛)2). Decompression requires two multiplications and an inverse over 𝕫 𝕫 /n𝕫 𝕫  and a square root in 𝕫 𝕫  and 

require time 𝑂(𝑙𝑜𝑔(𝑛)2. 

2.4 Key distribution protocol  

         

(Stalling,W., 2016) presented Diffie– Hellman key exchange protocol which was introduced by Malcolm John 

Williamson (British mathematician and cryptographer) in 1976.  The first published public-key algorithm appeared 

in the seminal paper by Diffie and Hellman that defined public-key cryptography. It is generally referred to as 

Diffie-Hellman key exchange protocol. A number of commercial products employ this key exchange technique. The 

purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent 

encryption and decryption of messages. The algorithm itself is limited to the exchange of secret values. The security 

of Diffie-Hellman algorithm depends on the difficulty of computing discrete logarithms. 

 

Global Public elements:      N is a prime number which can define a domain so called          

                                             curve     area or elliptic curve, α is a primitive root of N   

                                            such that 𝛼 <  𝑁.     
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Key Generation for user A:   Select private key Xa such that Xa < N and then  

                                               calculate public key Ya = α 
xa

 mod N. 

Key Generation for user B:  Select private key Xb such that Xb < N and then 

                                              calculate public key Yb = α 
xb

 mod N 

Secret key for user A        :   K= (Yb) 
xa

 mod N 

Secret key for user B         :  K= (Ya) 
xb

 mod N 

A workout Example: 

An integer number N = 353 that is domain size and its primitive root α = 3. A and B select secret keys A = 97 and B 

= 233, respectively. Each of them computes public key: 

A computes X = 3
97

 mod 353 = 40 and  B computes Y = 3
233 

mod 353 = 248. 

They compute secret key in the following ways by exchanging public key between each other. A computes 𝐾 =

 (𝑌)𝐴 𝑚𝑜𝑑 353 =  24897   𝑚𝑜𝑑 353 = 160 and B computes 𝐾 =  (𝑋)𝐵 𝑚𝑜𝑑 353 =  40233 𝑚𝑜𝑑 353 = 160. 

 

2.4.1 Brute-force Attack 

We assume an attacker would have available the following public information:  

N = 353, α = 3, YA = 40, YB = 248. It would be possible by brute-force to determine the secret key 160. In particular, 

an attacker Eve can determine the common key by discovering a solution to the following equations: 

3𝑎 𝑚𝑜𝑑 353 =  40……………………………………Equ.(32) 

3𝑏 𝑚𝑜𝑑 353 =  248……………………………..……Equ(33)  

The brute-force approach is to calculate exponentiations of 3 modulo 353, stopping when the result equals either 40 

or 248. The desired answer is reached with the indices of 97 which provides 3
97

 mod 353 = 40. However, with the 

larger numbers, the problem becomes impractical.  

 

2.4.2 The Man-in-the middle attack 

The protocol is insecure against man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys and Darth 

is the adversary. The attack proceeds as follows.   

Step-1: Darth prepares for the attack by generating two random private keys 𝑋𝐷1
and                     

             𝑋𝐷2
and then computing the corresponding public keys  𝑌𝐷1

 and  𝑌𝐷2
 

Step-2: Alice transmits YA to Bob. 
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Step-3: Darth intercepts YA and transmits 𝑌𝐷1
 to Bob. Darth also computes  

            𝐾2 = (𝑌𝐴)𝑋𝐷2  𝑚𝑜𝑑 𝑁 

Step-4: Bob receives 𝑌𝐷1
 and calculates 𝐾1 = (𝑌𝐷1

)𝑋𝐵 𝑚𝑜𝑑 𝑁 

Step-5: Bob transmit YB to Alice. 

Step-6: Darth intercepts YB and transmits 𝑌𝐷2
 to Alice. She computes also 

             𝐾1 = (𝑌𝐵)𝑥𝐷1  𝑚𝑜𝑑 𝑁 

Step-7: Alice receives 𝑌𝐷2
 and calculates 𝐾2 = (𝑌𝐷2

)𝑋𝐴  𝑚𝑜𝑑 𝑁 

A workout example: 

Table 2.4: The process of the man-in-the-middle attack 

   

Private Key  XA =2 

public key 𝑌𝐴 = α 𝑋𝐴  𝑚𝑜𝑑 𝑁 

 =9 

 

 

Secret key 

𝐾2 = (𝑌𝐷2
)𝑋𝐴  𝑚𝑜𝑑 𝑁 = 304 

Alice and Darth shared 

secret key 𝐾2 

Private keys  𝑋𝐷1
= 7,  𝑋𝐷2

= 11,    

Public keys: 𝑌𝐷1
= α𝑋𝐷1   mod N = 69 

                     𝑌𝐷2
= α𝑋𝐷2   mod N = 294 

                                         𝑌𝐷1
 

Intercepting    key = 9, Calculating secret 

key  𝐾2 = (𝑌𝐴)𝑋𝐷2 𝑚𝑜𝑑 𝑁 = 304 

𝑌𝐷2
         

Calculating secret key 

𝐾1 = (𝑌𝐵)𝑋𝐷1 𝑚𝑜𝑑 𝑁 = 250 

 

Private key XB = 5 and 

public key  

𝑌𝐵 = α𝑋𝐵  𝑚𝑜𝑑 𝑁=243 

 

Calculating secret key 

𝐾1 = (𝑌𝐷1
)

𝑋𝐵
𝑚𝑜𝑑 𝑁 

= 250 

𝑌𝐵            

Bob and Darth shared 

secret key 𝐾1 

 

At this point Bob and Alice think that they share a secret key but instead Bob and Darth share secret key K1 and 

Alice and Darth share secret key K2.  

All further communication between Bob and Alice is computed in the following ways.  

Step-1: Alice sends an encrypted message (𝑀): 𝐸(𝐾2, 𝑀)  

Step-2: Darth intercepts the encrypted message and decrypts it to recover M 
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Step-3: Darth sends information to Bob by 𝐸(𝑘1, 𝑀) 𝑜𝑟 𝐸(𝐾1, 𝑀′), where 𝑀′ is any message. Case 1: Darth 

wants to eavesdrop on the communication without altering it.  In the second case, Darth wants to modify the 

message going to Bob. The key exchange protocol is vulnerable to such an attack because it does not authenticate 

the participants. This vulnerability can be overcome with the use of digital signature and public key certificates and 

newly designed M.S.H. Biswas Cryptosystem. 
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CHAPTER 3 

 

 RESEARCH METHODOLOGY 

 

 

 

3.1 Description of research methodology 

My research methodology requires gathering relevant data from applied cryptographic article and assembling them 

in order to analyze the mathematical concepts applied in cryptography and arrive at more complete understanding in 

order to construct a new cryptosystem which will be able to solve all the problem formulated in problem statement 

from Michael O. Rabin cryptosystem. The problem that was formulated by me in chapter one required to study a lot 

of cryptographic articles related to Michael O. Rabin cryptosystem. Because, I proposed to solve all of the problem 

of Michael O Rabin Cryptosystem and that’s why I needed to inquire about whether the formulated problem had 

already been solved by other researcher. It was the requirement of my research activities which was if the problem 

had already solved by other researcher, I had to choose another topic. I had studied more than 65 articles related to 

Michael O. Rabin Cryptosystem, but none of them solved the similar quadratic residue identification problem from 

that my confidence level grew and I stacked to it that I need to develop a new cryptosystem which would be able to 

solve similar quadratic residue identification problem in Michael O. Rabin cryptosystem. I hope to shed light on the 

following questions through my research. What could be convenient solution for identifying similar quadratic 

residue generated from different input? To solve the issues, I had to prototype a mathematical model for several 

times due to see what the solution fit for it. How was I able to solve the problem? It was great history behind my 

research. I started with zero knowledge protocol that was my first preference to develop a new zero knowledge 

protocol from existing one. I had been studying zero knowledge protocol for 5 months. But I did not find any 

suitable problem because it was well defined protocol and that was used in Block chain technology. One day, I was 

reading an elliptic curve cryptography in Wikipedia where an author mentioned that the there was no solution to 

identify similar quadratic residue generated from different input in Michael O. Rabin Cryptosystem. Seeing that I 

simultaneously changed my research topic and I had been studying Rabin cryptosystem for 18 days. I simulated a 

mathematical experiment by hand and I was continuing prototyping to solve that problem.  I was able to solve the 

problem within 18 days. How did I ensure that my solution is correct?  It was simple because mathematically it 

showed correct result in all the time. I tested by giving different input and provided real output what I expected. I 

had written a review article and submitted to IJSER. It was a great news for me that my research article was 

accepted by IJSER and it was published on June 2019 over there. But, the proposed mathematical model could not 

authenticate the actual sender because it was a just cipher which was unable to fulfil the requirements of 

cryptosystem. I studied the Rabin signature Scheme and other researcher’s outcome about the Rabin signature 

scheme. I observed that several researcher solved the forgery attack on Rabin signature in different ways.  I applied 

my mathematical intelligence in order to add authentication facility to update my newly developed cipher article 
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namely “A mathematical model for ascertaining same ciphertext generated from different plaintext in Michael O. 

Rabin Cryptosystem”. I had successfully implemented authentication system in October 2019. I submitted my 

review article namely “M.S.H. Biswas crypto-intensive techniques” to same journal for publication and that was 

also published on October 15, 2019 in IJSER. It was a hybrid cryptosystem which comprised 4 types key: public 

key, private key, shared secret key, and pre-negotiated key. I did not give mathematical proof for that because of not 

giving opportunity to proofreading of my article. I submitted updated version but even after I did not get any 

response from IJSER. I applied mathematical problem solving skills which was exploratory research techniques on 

an unexamined issues and I also used descriptive research type for research documentation that is called thesis. I 

used two type data collection instruments which were as follows:  

Surveys: 

I used internet based surveys and questionnaire based surveys using laptop and tab for data collection. This is a 

quantitative and descriptive data collection approach. A number of literature review selecting sources were 

considered. I had selected literature that was closely related to the research objective. I used Google search engine as 

a primary data collection source. I specially concentrated on scholarly article, cross reference article and other 

scientific articles. I downloaded literature from different sources such as Science Direct, IEEE, research gate, MDPI, 

Springer, Google scholarly article. I also used different social media for clarification of particular problem.  The 

secondary data collection approach was Sci-Hub which provides free access to millions of research papers and 

books without regard to copyright.  

Interviews:  

Secondly. I had used interview based data collection technique that was qualitative and exploratory research 

technique. My research was exploratory research because a number of well-defined theories had been applied to 

solve the formulated problem of Michael O. Rabin cryptosystem. I used open questioners on Google through 

internet connected device. I tried to continue follow-up questions in order to keep logical sequence.  I visited 

hundreds of website to clarify different problem. I also visited different educational media for clarifying 

mathematical reasoning. I sometimes experienced new issues of surface.  But I also used observation technique by 

doing mathematical experiment. My observation technique was as follows.   

Observations:  

To design a new cryptosystem, I had prototyped mathematical experiment on hand many times to justify whether my 

method was efficient enough to fulfill a particular objective. My research was theoretical but it covers applied 

cryptographic research because it has real life application such as RFID chips which is greatly used in supply chain 

management system particularly freight monitoring system. I hope implemented cryptosystem will soon be used in 

RFID chips.   At the final stage, when I had completed research documentation (thesis writing), it required to review 

in order to correction. During correction time, I took another initiatives to design a new smallest cipher where all of 

my beloved teachers’ names and their respective pictures will be framed as a memory. I again had succeeded to 

develop a new smallest cipher which was published in IJSRP on December 2019 edition namely “A systematic study 
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on classical cryptographic cypher in order to design a smallest cipher”. All of my publications have been appended 

at the end of research document (List of publication). Fortunately, my research methodology was followed by agile 

methodology which was actually software development methodology. Because, I had intention to design a new Zero 

knowledge protocol, but it turned into implementation a new cryptosystem namely ”M.S.H. Biswas cryptosystem” 

which was unexpected outcome.  I think research is one of the most precious thing because it helps see the world in 

different window. I also think research is the only way to be a scholar. By doing this research, I have gained research 

experience and publication skill. My writing skills have greatly enhanced while writing this research document. I 

understood difference between review article, research article and research documentation. The main purpose to do 

research in cryptography is that I would like to achieve PhD in applied cryptography and I want to get involved in 

teaching profession. I would like to make a scientific carrier in computer science.   It seems to me that research has 

great impact on human nervous system. The research is an antidote of depression. I experienced different scientific 

mathematical application, scientific writing method and robust  sentence structure from there I influenced to achieve 

good communicative skills in English and that is why  I am going to get admitted to MA in TESOL at 

Northsouth University.  
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CHAPTER 4 

 

RESULTS & DISCUSION 

 

 

4.1 M.S.H. Biswas cryptosystem 

In this research activities, I have designed a new public key cryptosystem according to my name which was 

published and appended at end of this manuscript (List of publication) which can effectively encrypt and 

decrypt furthermore receiver can authenticate sender using signature algorithm based on Diffie – Hellman key 

exchange protocol, concept of square modular arithmetic from Michael O. Rabin Cryptosystem, Floor function 

and absolute value function. Presumably let an entity A wants communicate information to other entity B. The 

both entities A and B should have some confidentiality. Two entities communicate each other over insecure 

channel where espionage can detect the communication and reveal the sensitive information that is why an 

efficient technique is necessary to ensure secure communication over digital medium between two parties. They 

need a secret key for encoding message in order to preserve message confidentiality and ensure security. The 

Diffie-Hellman key exchange protocol can be used to solve these phenomenon.  The both entities A and B 

create a shared secret key using aforesaid key exchange protocol and then both of them use same key is 

generated from Diffie-Hellman key exchange protocol. A encrypts secret information with a secret key so that 

unauthorized entity cannot presume and disclose real information. A encrypts information and chooses an 

equivalent residuum to generate signature by solving equation m(m + g) ≡ (𝑓 ∗ 𝑟 ∗ 𝑢) modulo k or r(r + g) ≡

(𝑓 ∗ 𝑟 ∗ 𝑢) modulo k , where r is quadratic residue modulo k, g is generator of elliptic curve, f is floor value of 

quadratic quotient modulus K and u (undefined random number) is selected arbitrarily to justify truthiness of 

equation. A sends only 4-tuple signature (𝑓, 𝑟, 𝑢, 𝑟𝑒) to receiver B in case-1 and another case-2 require to send 

both ciphertext and signature. The entity B verifies the signature by checking truthiness of equation 𝑟𝑒 ≡ (𝑓 ∗

𝑟 ∗ 𝑢) modulo k or 𝑟𝑒 ≡ (𝑛 ∗ 𝑟 ∗ 𝑢) 𝑚𝑜𝑑𝑢𝑙𝑜 𝑘. B opens message by |√𝑓 ∗ 𝑘 + 𝑟| if and only if aforesaid 

equation is true, otherwise it rejects.  

      Key Generation Algorithm:   

 K = (Yb) 
xa

 mod N 

    = (⍺xb
 mod N) 

Xa
 mod N  

    = (⍺xb
) 

Xa
 mod N  

    = ⍺ 
xb

 
Xa

 mod N 

    = (⍺Xa
)

 xb
 mod N 

    = (⍺xa
 mod N) 

Xb
 mod N 

    = (Ya) 
xb

 mod N 
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Encipher Algorithm:  

To encrypt a message m, we need to computes f = ⌊
𝑚2

𝑘
⌋  𝑎𝑛𝑑 r =  𝑚2 𝑚𝑜𝑑 𝑘, c =  (f, r), where f = floor value, 

 r = residuum, hence c = pairwise ciphertext. Ciphertexts are sometimes called hash value and denoted by h(m).  

Signcryption Algorithm:  

 

The signcryption algorithm is combination of signature generation and signature verification algorithm. To sign a 

message, signer S try to find the solution of the equation either m(m + g) ≡ c ∗ u mod k ⤇ m(m + g) ≡ (f ∗ r ∗

u) mod k. or r(r + g)  ≡ c ∗ u mod k ⤇  r(r + g)  ≡ (f ∗ r ∗ u) mod k.  The truthiness of equation gives four tuple 

signature (f, r, u, re), where re  ≡  m(m + g) mod k,  re = Equivalent residuum. The verifier V verify the signatory 

by calculating the same equation 𝑟𝑒 ≡  (𝑓 ∗ 𝑟 ∗ 𝑢) 𝑚𝑜𝑑 𝑘. Notice, verifier is actually intended receiver who open 

message depending on truthiness of aforesaid equation.  The opening process is as follows.  

Decryption Algorithm:  

The verifier opens message by │√𝑓 ∗ 𝑘 + 𝑟│ 

 

4.1.1 Mathematical proof of M.S.H. Biswas Cryptosystem 

 

Assuming that Alice wants to send a secret information for example, A=65 to Bob using valid signature. She first 

hashes the secret message by m ↦ m
2
 modulo shared secret key and floor value of ⌊

652

40
⌋. She sends together 

signature and hashed message with to Bob.  Bob reveals message after verifying the signature of sender. The entire 

process is as follows.  

 

Key generation procedure: 

Table 4.1: Key Generation protocol structure 

Alice (Sender) Eve (Eavesdropper) Bob(Receiver) 

Known Unknown Known Unknown Known Unknown 

E=113      

g=5      

Private key P=7 Q=11    7, 11 Private key 

Q=11 

P=7  

A= 5
7
 mod 113    B= 5 

11
 mod 113 = 34 

 

A=34
7
mod 113 

 Ks  = 40 

 

   34 

                  

                                                          

                    

 

42 

         

             B= 42 
11

 mod 113 

              Ks  = 40 

                      Note
*
: g=generator, E=elliptic curve area, Ks= shared secret key 
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Base step for cipher algorithm: 

The square is a number multiplied by itself. The squaring function can transform an integer number into a natural 

number. The rules of mathematics imply that transformation of squared number to squared free number require 

square root function which is actually inverse function of square number. In mathematics, an inverse function or 

anti-function is a function that reverse another function: if the function f applied to an input x gives a result of y, 

then applying its inverse function g to y gives the result x and vice versa, i.e., f(x) = y iff g(y) = x. The division is 

inverse of multiplication according to basic mathematical rules. The truthiness of encipher method and decipher 

method for initial value is as follows.  Let message (m) = 1, 𝑚 ↦  𝑚2 

Cypher text (𝑐) = (𝑓, 𝑟) = {
Floor value (𝑓) = ⌊

12

40
⌋ = 0              

 Residuum (𝑟) =  12 mod 40 =  1  
………..Equ.(1) 

Plaintext = Decryption = d = |√𝑓 ∗ 𝑘 + 𝑟| …………………….…………Equ.(2) 

                                              = |√0 ∗ 40 + 1| 

                                               = |√1| = 1 (proved).  

As base case is true, depending on it the next step can be proceeded.  

Induction Step for Cipher algorithm: 

If a decimal number is divided by another one, the quotient and remainder are generated as per basic mathematical 

rule. In other perspective, quotient can be counted by floor function and remainder can be counted by modular 

arithmetic. 

A general division arithmetic for example- (divider)40

|

|
                              105(quotient)

     

                652=4225(divident)
−40

           225

      
 −200

                               25(remainder)

 

The keyword is divider which often acts in this cryptosystem as a division arithmetic at time as modular arithmetic 

where divider is indicated as a modulus. Since division is inverse of multiplication according to basic mathematics, 

for that reason, to retrieve the message quotient will have to be multiplied by the divider (keyword) and remainder 

will also have to be multiplied by the divider and then both will have to be added, because a natural number is 

divided into two parts. But in this cryptosystem, the remainder does not need to multiply with divider when message 

is retrieved because of modular arithmetic readily calculate residue which is equivalent to number after decimal 
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point ⨉ modulus. Therefore, for the reconstruction of the message, at first three distinct number will have to be 

recombined as reverse to sender actions which is as follows.  

𝑓𝑙𝑜𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 

 

This function construct a new number which is actually squared number. As quotient and residue are derived from 

squared number, square root function must be used to make it square free like√𝑓𝑙𝑜𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑒. 

The result derived from it will be either positive or negative value but natural number is to be counted only using 

absolute value function like|√𝑓𝑙𝑜𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑒|. This computation must result in original 

message according to mathematical logic. Suppose for  𝑚 = 𝑛 𝑎𝑛𝑑 𝑘 = 𝑛, proposed cipher technique is true. Let us 

see the truthiness of cipher technique is as follows.  

Quotient(𝑞) = ⌊𝑛2 ÷ 𝑛⌋ = 𝑛,  Residuum (r)  =  𝑛2 mod n =  0 

Cypher text (c) =  (𝑞, 𝑟) = (n, 0) 

              Decryption = d = |√𝑞 ∗ 𝑘 + 𝑟| 

                                         = |√𝑛 ∗ 𝑛 + 𝑜| 

                                         = |√𝑛2| = n (Proved) 

Since proposed cipher technique results in n terms correctly, the mathematical induction for proposed cipher 

technique is correct. 

Base step for Syncryption Algorithm: 

It is necessary, both quotient and residuum must be natural number that is greater than zero in order to generate 

signature for M.S.H. Biswas cryptosystem. The division arithmetic means that distribute integer number among 

divider and remaining left as a remainder because it cannot be distributed as a round number. When an even number 

is divided by an odd number likewise an odd number is divided by an even number, the calculator results in rational 

number which contains two parts: left-hand side is an integral number and right hand side fractions part. To calculate 

number after decimal point, the modular arithmetic is required which results in integer number.    

Induction step for Syncryption:  

The proposed syncryption algorithm works better depending on two proposition. The signature can be generated and 

verified by two significant ways: One of them is described in case-1 and other one is illustrated in case-2. 
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Case-1: Signature generation & verification 

 Signature can be generated depending on following proposition. 

(1) {
Floor value (𝑓) = ⌊𝑚2 ÷ 𝑘⌋   𝑖𝑓𝑓 𝑚2 ≥ 𝑘  

Residuum (𝑟) =  𝑚2 mod k     𝑖𝑓𝑓 𝑚 ≢ 0 
 

& 𝑚 ≢ 0 

& 𝑚2 ≢ 𝑘 

                       According to assertion (1), Equ.(3) must be true to generate signature. 

                              m(m + g) ≡ {h(m) ∗  u} mod k 

                                                ≡ (c ∗ u) mod k                                                   

                                                ≡ (f ∗ r ∗ u)mod k  ………….Equ.(3) 

  

To make signature is more intractable, Equ.(3) can also be written as  

 r(r + g) ≡ (f ∗ r ∗ u)mod k .Now let us see Equ.(3) has to be true satisfying proposition (1). For 

instance, message (65) plugging in Equ.(3)  

                    65(65 + 5)  ≡ (105 ∗ 25 ∗ 14) mod 40                                              

                                ∴ 30 ≡  30 (modulo 40) 

 

                Since equivalent residue 𝑟𝑒= 30. Depending on it sender generates 4-tuple   signature (105, 25, 14, and 30) 

based on Equ.(1,2 and 3) and sends it to receiver. Receiver is the verifier who verify signature by 

calculating Equ.(4) is as follows. 

                           𝑟𝑒 ≡ (f ∗ r ∗ u)mod k………………….Equ.(4) 

                               ≡ (105 ∗ 25 ∗ 14) mod 40 

                               ≡ 30 (𝑚𝑜𝑑 40) [Verified] 

 

Verifier decrypts message by depending on truthiness of above equation. If any value of four tuple 

signature is altered during transmission, the aforesaid equation becomes fails and verifier reject message. 

Otherwise, signature is accepted by verifier and he or she will open the message by decipher method 

Equ.(2) is as follows.  

                                       D = |√𝑞 ∗ 𝑘 + 𝑟| 

                                          = |√105 ∗ 40 + 25| 

                                          = |√4225| = 65 = A (proved). 

 As it is shown that signature generation and verification according to proposition (1) and Equ.(3,4)  is true, 

for this reason, mathematical induction is proved for case-1.  
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Case-2: Signature generation & verification  

 Signature can be generated depending on following proposition. 

(2) {
ceiling value (𝑛) = ⌈𝑚2 ÷ 𝑘⌉  𝑖𝑓𝑓 𝑚2 < 𝑘 

Residuum (𝑟) =  𝑚2 mod k     𝑖𝑓𝑓 𝑚 ≢ 0  
 

& 𝑚 ≢ 0 

& 𝑚2 ≢ 𝑘 

                       According to assertion (2), Equ.(5) must be true to generate signature. 

                              m(m + g) ≡ {h(m) ∗  u} mod k 

                                               ≡ (c ∗ u) mod k                                                   

                                               ≡ (n ∗ r ∗ u)mod k  ………….Equ.(5) 

      To make signature more intractable, Equ.(5) can also be written as  

r(r + g) ≡ (n ∗ r ∗ u)mod k .Now let us see Equ.(5) has to be true satisfying proposition (2). For 

instance, message (1) plugging in Equ.(5)  

                  1(1 + 5)  ≡ (1 ∗ 1 ∗ 6) mod 40                                              

                              ∴ 6 ≡  6 (modulo 40)  

So equivalent residue 𝑟𝑒= 6. Sender generates 4-tuple signature (1, 1, 6 and 6) based on Equ.(1,2 and 

5). In this case-2, Sender has to be sent four tuple signature together with ciphertext to receiver. 

Because receiver can verify signatory of intended sender but it cannot open message from signature 

only. Receiver is the verifier who verify signature by calculating following equation. 

 
                                       𝑟𝑒 ≡ (q ∗ r ∗ u)mod k …………..Equ.(6)            

                                           ≡ (1 ∗ 1 ∗ 6) 𝑚𝑜𝑑 40 

                                           ≡ 6 (𝑚𝑜𝑑 40) [Verified] 

Verifier decrypts message by depending on truthiness of Equ.(6). If any value of four tuple signature is 

altered during transmission, the aforesaid Equ.(6) becomes false and verifier reject message. Otherwise, 

signature is accepted by verifier and open message by decrypting ciphertext in similar fashion (Equ.(2)). 

As it is shown that signature generation and verification by Equ.(5, 6) satisfying proposition (2) is true, 

for this reason, mathematical induction is proved for case-2.  
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4.1.2 Comparison of Michael O. Rabin and M.S.H. Biswas Cryptosystem   

 

Table 4.2: The comparison between two cryptosystems. 

Michael O. Rabin Cryptosystem M.S.H. Biswas Cryptosystem 

1. Ciphertext is a quadratic residue.  

2.   Decryption generates 4-tuple 

3. It uses asymmetric key 

4. This is a asymmetric cryptography   

5. It does not offer simultaneous communication 

between two entities. 

6. It facilitates one party active other party 

passive.   

7. It is vulnerable against chosen ciphertext 

and plaintext attack. 

8.  Michael O. Rabin’s Encryption and decryption 

system cannot identify same ciphertext 

generated from different plaintext. For example,  

C=13
2
 

mod 77 

C=20
2
 

mod 77 

C=57
2
 

mod 77 

C=64
2
 

mod 77 

 

 

 

 

 

 
 

64 13 20 57 

9. C = 15 which against what input that is 

encryption failure and to decrypt C = 15 

result in same 4-tuple that is decryption 

failure. 

 

10. One party key issuer other party message 

sender. Both party cannot communicate 

simultaneously because key issuer wait for 

other party’s message. Secret key possesses 

only one party.  

11. Advantage of Michael O. Rabin Signature: 

1. Ciphertex is a pair of integer. 

2. Decryption result in single plaintext. 

3. It uses shared secret key publicly.    

4. This is public key cryptosystem. 

5. It offers simultaneous communication between 

two entities.   

6. It facilitates the both entities active.  

7. It is strong against man in the middle attack, 

brute-force attack, modulus exponential 

attack, chosen ciphertext and plaintext attack.  

8. It is strong due to having ability to distinguish 

same Ciphertext uniquely generated from 

different plaintext. 

9. Proposed technique can identify same 

ciphertext against different plain text. 

10.  proposed cypher can efficiently identify same 

residues separately generated from distinct 

plaintext using quotient-residuum technique is 

as follows: 

 

Plaintext m = 13, Residuum=13
2
mod 77 

Quotient= ⌊
132

77
⌋, Corresponding  encrypted text C 

= (2,15) 

 

Plaintext m = 20, Residuum=20
2 

mod 77=15, 

Quotient= ⌊
202

77
⌋=5, Corresponding  encrypted text 

C = (5,15) 

 

Plaintext m = 57, Residuum=57
2 

mod 77=15, 

Quotient=⌊
572

77
⌋=42, Corresponding  encrypted text 

C=15 
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The signature actually contains several 

interesting feature are 

o The signature is possible using       

Every pair of primes.  

o    Different signatures of the same      

   Documents are different. 

12.The verification needs only two 

multiplications and therefore it is fast 

enough to be used in authentication protocol 

12. Disadvantage Michael O. Rabin Signature: 

It is vulnerable to forgery attacks. It is 

relatively easy to compute 𝑆2 𝑚𝑜𝑑 𝑁 and 

choose any message 𝑚′ after that compute 

multiplicative inverse of 𝑚′ (hash value of 

m), compute 𝑈′ = (𝑆2 ∗  𝑚′−1
) mod N and 

forge the signature as (𝑚′−1
, 𝑈′, s) without 

knowing the factorization of N. 

 

C = (42,15) 

 

Plaintext m = 64, Residuum=64
2 

mod 77=15, 

Quotient=⌊
642

77
⌋=53, Corresponding  encrypted text 

C = (53,15) 

 

11. The proposed crypto intensive technique can 

uniquely identify each cipher text against 

plaintext 

 

12. It is unforgeable in forgery attack while Rabin 

signature is forgeable in forgery attack.  

 

13. Advantage of M.S.H. Biswas Signature: The 

signature is generated by computing the 

congruence equation m(m + g)  ≡  c ∗ u mod 

k. It require less time complexity compare to 

Michael O. Rabin public key signature 

scheme.  

 

14. It is unforgeable against forgery attack  
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CHAPTER 5 

 

CONCLUSIONS  

 

 

1.1 Conclusion        

The proposed M.S.H. Biswas cryptosystem is efficient for solving identification of problem of similar quadratic 

residue generated from different plaintext in Michael O. Rabin cryptosystem on the one hand. On the other hand, the 

signature algorithm is capable to handle forgery attack, chosen plaintext attack, Brute force attack, and man-in-the 

middle attack. It helps removing four to one mapping signature and one to four mapping decryption. Identification 

each ciphertext separately was the first objective because modular arithmetic can generate same cyphertext from 

different plaintext. The proposed mathematical model can efficiently identify each ciphertext separately generated 

form modular reduction arithmetic. To verify sender and validate message through signature verification system was 

2
nd

 objective where both authentication and integrity elements have been successfully deployed to implement 

signature scheme. Proposed key generation technique is derived from Diffie − Hellman key-exchange protocol but 

there was a security vulnerability in symmetric key generation stage (man in the middle attack), because it could not 

authenticate the participants. The proposed cryptosystem not only provided solution of similar quadratic residue 

identification problem but it also ensure security and confidentiality by syncription algorithm..   

1.2 Research Contributions 

In this research activities, a new public key cryptosystem has been designed by removing barrier of similar quadratic 

residue identification problem in Michael O. Rabin cryptosystem.  It consists of Key generation algorithm, 

Encryption algorithm, Decryption algorithm, Signature generation algorithm and Signature verification algorithm,  

 

1.3 Future Work        

I would like to leave encryption scheme for future cryptographic reader to make concrete ciphertext which can 

uniquely identify similar quadratic residue separately generated from different input. 
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APPENDIX A 

 

Table A.1: ASCII values 

Letter ASCII Binary Letter ASCII Code Binary 

a 097 01100001 A 065 01000001 

b 098 01100010 B 066 01000010 

c 099 01100011 C 067 01000011 

d 100 01100100 D 068 01000100 

e 101 01100101 E 069 01000101 

f 102 01100110 F 070 01000110 

g 103 01100111 G 071 01000111 

h 104 01101000 H 072 01001000 

i 105 01101001 I 073 01001001 

j 106 01101010 J 074 01001010 

k 107 01101011 K 075 01001011 

l 108 01101100 L 076 01001100 

m 109 01101101 M 077 01001101 

n 110 01101110 N 078 01001110 

o 111 01101111 O 079 01001111 

p 112 01110000 P 080 01010000 

q 113 01110001 Q 081 01010001 

r 114 01110010 R 082 01010010 

s 115 01110011 S 083 01010011 

t 116 01110100 T 084 01010100 

u 117 01110101 U 085 01010101 

v 118 01110110 V 086 01010110 

w 119 01110111 W 087 01010111 

x 120 01111000 X 088 01011000 

y 121 01111001 Y 089 01011001 

z 122 01111010 Z 090 01011010 
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APPENDIX B 

 

Table B.1: Infinitely many prime formation 

Arithmetic progression First 10 prime number counting 

2𝑛 +  1 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … 

4𝑛 +  1 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, … 

4𝑛 +  3 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, … 

6𝑛 +  1 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, … 

6𝑛 +  5 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, … 

8𝑛 +  1 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, … 

8𝑛 +  3 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, … 

8𝑛 +  5 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, … 

8𝑛 +  7 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, … 

10𝑛 +  1 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, … 

10𝑛 +  3 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, … 

10𝑛 +  7 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, … 

10𝑛 +  9 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, … 

12𝑛 +  1 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, . .. 

12𝑛 +  5 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, . .. 

12𝑛 +  7 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, . .. 

12𝑛 +  11 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, . .. 
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APPENDIX C 

 

Table C.1: The generator of group G1 = {3, 5} under mod 7 

 

 

F
ir

st
 s

u
b

g
ro

u
p

 o
f 

el
em

en
ts

 g𝞵  mod 7 g
1
 g

2
 g

3
 g

4
 g

5
 g

6
 Comments 

1 1 1 1 1 1 1 1
st
 row-column unique 

2 2 4 1 2 4 1 ⤬ 

3 3 2 6 4 5 1 Generator 

4 4 2 1 4 2 1 ⤬ 

5 5 4 6 2 3 1 Generator 

6 6 1 6 1 6 1 ⤬ 

 

 

 

 

Table C.2: The generator of group G2 = {2, 6, 7, 8} under modulo 11 

 

 

g𝞵  (11) g
1
 g

2
 g

3
 g

4
 g

5
 g

6
 g

7
 g

8
 g

9
 g

10
 Comments 

1 1 1 1 1 1 1 1 1 1 1 1
st
 row-col same 

2 2 4 8 5 10 9 7 3 6 1 Generator  

3 3 9 5 4 1 3 9 5 4 1 ⤬ 

4 4 5 9 3 1 4 5 9 3 1 ⤬ 

5 5 3 4 9 1 5 3 4 9 1 ⤬ 

6 6 3 7 9 10 5 8 4 2 1 Generator  

7 7 5 2 3 10 4 6 9 8 1 Generator 

8 8 9 6 4 10 3 2 5 7 1 Generator 

9 9 4 3 5 1 9 4 3 5 1 ⤬ 

10 10 1 10 1 10 1 10 1 10 1 ⤬ 
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Table C.3: The modular additive group of N=77 

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

19 20 21 22 23 24 25 26 27 28 29 30 31 

 

32 33 34 35 36 37 38 

+ 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

19 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

20 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 

21 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

22 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

23 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

24 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 

25 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

26 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

27 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

28 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 

29 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 

30 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

31 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

32 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 

33 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

34 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

35 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 

36 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

37 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
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+ 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

38 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

40 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

41 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

42 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

43 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

44 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

45 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

46 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

47 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

48 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

49 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

50 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

51 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

52 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

53 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

54 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

55 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

56 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

57 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

+ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 

58 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 

60 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

61 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

62 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

63 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 

64 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

65 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

66 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

67 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 

68 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 

69 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

70 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

71 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 

72 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

73 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

74 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 

75 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

76 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
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