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Abstract- This paper presents a comprehensive study on 

meta-learning techniques for the efficient fine-tuning of large 

language models (LLMs). The research investigates the 

application of meta-learning strategies to enhance the adaptability 

and performance of LLMs with limited computational resources. 

The findings demonstrate significant improvements in fine-tuning 

efficiency and model performance, as evidenced by statistical 

analyses and experimental results. 
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Fine-tuning, Machine Learning, Artificial Intelligence. 

 

 

 

I. INTRODUCTION 

 
he advent of large language models (LLMs) has 

revolutionised natural language processing (NLP), offering 

unprecedented capabilities in understanding and generating 

human language. However, the substantial computational 

resources required for training and fine-tuning these models pose 

significant challenges. This research explores the use of 

meta-learning techniques to address these challenges, aiming to 

enhance the efficiency and effectiveness of LLM fine-tuning 

processes. Elaborated, meta-learning is a form of reinforcement 

learning (RL), except that instead of the model focusing on 

learning a single policy for a specific task, as is the case with 

standard RL, Meta-RL ensures that the model learns to adapt to 

new tasks quickly and efficiently transfer knowledge, by 

implementing LSTM to feed the history of actions, rewards, and 

states, in each MDP setting. 

II. RESEARCH AND IDEAS 

 
A. Literature Review 

A comprehensive review of existing literature reveals that 

traditional fine-tuning methods for LLMs are often 

resource-intensive. Recent advancements in meta-learning offer 

promising solutions by leveraging prior knowledge to accelerate 

the learning process. 
 

 

 

B. Research Objectives 

The primary objectives of this research are: 

 

1. To develop a meta-learning framework tailored for LLM 

fine-tuning. 

2. To evaluate the performance improvements achieved 

through this framework. 

3. To analyse the computational efficiency of the proposed 

methods. 
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III. RESEARCH ELABORATIONS 

 
A. Background 

In recent years, there has been a growing interest in natural 

language processing (NLP) and the development of models that 

can generate human-like text. These models have various 

applications, such as text summarization, machine translation, and 

chatbots; however, developing a parameter-efficient text 

generator model that can generate high-quality text is still a 

challenging task. 

In this project, we focus on creating a parameter-efficient text 

generator model that can generate text in the same way as a 

Reddit TIFU post. TIFU (Today I Fucked Up) is a popular 

subreddit where users share their embarrassing or funny stories 

about mistakes they made; the dataset contains long-form text 

posts with titles and summaries, making it an ideal dataset for 

training a text generation model. 

The goal of this project is to develop a BERT-based text 

generation model that can generate high-quality text while being 

parameter-efficient. BERT (Bidirectional Encoder 

Representations from Transformers) is a popular NLP model that 

has achieved state-of-the-art results in various NLP tasks. By 

using BERT as the backbone of our text generation model, we can 

leverage its powerful language understanding capabilities and 

fine-tune it for text generation. 

To achieve this goal, we first explore the Reddit TIFU dataset and 

preprocess it for training. We then design and train a BERT-based 

text generation model using PyTorch and the Hugging Face 

Transformers library, and tune the hyperparameters to improve 

the model's performance and evaluate it using multiple metrics 

such as F1 score, 

In the following sections, we describe the data preprocessing 

steps, the model architecture, the loss function, the optimization 

algorithm, and the training procedure. We also present the results 

of the hyperparameter tuning process and the final model's 

performance, before finally discussing the strengths and 

limitations of the model and suggesting some future directions for 

improving the model's performance and exploring new 

applications. 

 

 

B. Materials and Frameworks 

To construct the hyperparameter-tuned text generator model, we 

used the following materials and methods: 

1. Reddit TIFU dataset: The Reddit TIFU dataset, which 

contains long-form text posts with titles and summaries 

in the form of ‘tl;drs’ from the r/tifu subreddit, was 

deemed suitable for training our LLM. The dataset is 

also available in the croissant format, which is a 

high-level format for machine learning datasets that 

combines metadata, resource file descriptions, data 

structure, and default ML semantics into a single file. 

2. Data preprocessing: We preprocessed the dataset by 

converting the text into a format that can be used for 

training a text-generation model. This involved 

tokenizing the text, converting it to a numerical format 

using a pandas dataframe, and splitting it into training 

and validation sets based on set ratios. 

3. Model architecture: We used a BERT-based 

architecture that consists of a BERT encoder and a linear 

layer. The BERT encoder is responsible for encoding the 

input text, and the linear layer is responsible for 

generating the output text. 

4. Loss function: We used cross-entropy loss as the loss 

function to optimise the model. It is a common loss 

function used in text generation tasks that helps measure 

the difference between the discovered probability 

distribution of an LLM model and the predicted values 

to quantify the model’s performance. 

5. Optimization algorithm: We used the Adam optimizer 

with a learning rate of 1e-5. The Adam optimizer is a 

popular optimizer used extensively for LLM tasks. 

6. Training procedure: We trained the model using the 

following steps: 

a. We split the dataset into training and validation 

sets. 

b. We defined a batch size and created a PyTorch 

DataLoader to iterate over the dataset. 

c. We defined the number of epochs and the 

learning rate. 

d. We defined the loss function and the optimizer. 

e. We trained the model using the training data 

and monitored the model's performance on the 

validation set. 

f. We evaluated the model's performance on a 

held-out test set. 

7. Hyperparameter tuning: We tuned the 

hyperparameters, such as the learning rate, batch size, 

number of layers, and dropout rate, to improve the 

model's performance. Furthermore, we also used 

techniques such as data augmentation, batch 

normalisation, and early stopping to prevent overfitting 

and improve the model's generalisation ability, whilst 

minimising the likelihood of slow, or inaccurate 

convergence gradient descent. 
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IV. METHODOLOGY 

 
A. Exploratory Data Analysis (EDA) 

The initial stage of our methodology involved a comprehensive 

exploratory data analysis (EDA) of the Reddit TIFU dataset. The 

dataset was chosen due to its richness in narrative text, which is 

ideal for training a text generation model. EDA was crucial for 

understanding the underlying structure and characteristics of the 

dataset, which in turn informed our preprocessing and model 

development strategies. 

 

 

 

Data Inspection: We began by inspecting the dataset to 

understand its overall structure and content. The dataset 

comprises user-generated posts with titles and corresponding 

summaries (TL;DRs). This dual structure provides a unique 

opportunity to train the model to generate concise summaries 

from longer text bodies. 

 

 

 

 

Statistical Analysis: Key statistical measures such as word count, 

sentence count, and the distribution of text lengths were analysed. 

The analysis revealed the following insights: 

 

● Text Length Distribution: The majority of posts had a 

length between 50 to 150 tokens, with a significant 

portion exceeding this range. This informed our decision 

on the maximum sequence length for the model. 

 

 

 

 

● Vocabulary Diversity: A diverse vocabulary range was 

observed, with a high frequency of unique words, 

highlighting the variability of language used in the 

posts. 

 

● Common Themes and Topics: Frequent topics 

included everyday mishaps, humorous incidents, and 

personal anecdotes, providing a diverse range of content 

for the model to learn from. 

 

 

 

Visualisation: We utilised visual tools such as histograms and 

word clouds to visualise text length distributions and common 

word frequencies. This helped in identifying patterns and 

potential preprocessing requirements, such as handling outliers 

and standardising text lengths. 

http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 14, Issue 7, July 2024              44 

ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 

10.29322/IJSRP.14.07.2024.p15106   www.ijsrp.org 

 

Class Imbalance: Although the dataset is primarily textual, 

examining the distribution of categories (e.g., various themes 

within TIFU posts) was essential to ensure balanced training. This 

analysis helped in identifying any significant class imbalances 

that might require corrective measures during preprocessing. 

 

B. Data Augmentation 

Given the limited size of the dataset, data augmentation was 

employed to enhance the training data and improve the model's 

generalisation capabilities. Data augmentation techniques in NLP 

involve generating variations of the existing text data to 

artificially increase the dataset size. 

 

Techniques Used- 

 

1. Synonym Replacement: We replaced words in the text 

with their synonyms using a pre-trained word 

embedding model. This technique helps in introducing 

lexical diversity while preserving the original meaning 

of the sentences. 

 

2. Random Insertion: Random words were inserted into 

sentences. This technique ensures that the model learns 

to handle unnecessary or extraneous information, 

thereby improving its robustness. 

 

3. Random Deletion: Words were randomly deleted from 

sentences to create incomplete inputs. This helps the 

model to understand context better and to generate 

coherent text even when parts of the input are missing. 

 

4. Back Translation: Sentences were translated to another 

language and then back to English using pre-trained 

translation models. This introduces paraphrased versions 

of the text, enhancing the variability in the training data. 

 

5. Shuffling Sentence Order: The order of sentences 

within a post was shuffled. This technique forces the 

model to understand the relationship between sentences 

and generate coherent text even when presented in a 

different order. 

 

 

 

Implementation: These techniques were applied systematically to 

the training set, ensuring a balanced augmentation without 

introducing significant noise. The augmented data was then 

combined with the original dataset to create a more robust 

training set. 

C. Model Architecture and Training 

We conducted extensive hyperparameter tuning to identify the 

optimal settings for training the BERT-based text generation 

model. The hyperparameters tuned included learning rate, batch 

size, number of layers, and dropout rate. 

 

Learning Rate: A range of learning rates was tested using a 

logarithmic scale from 1e-5 to 1e-2. The model was trained for 10 

epochs for each learning rate, and the final loss was recorded. A 

learning rate of 1e-3 was found to converge to the minimum loss. 

 

Batch Size: Different batch sizes were evaluated using a random 

search approach. Batch sizes ranging from 16 to 256 were tested, 

and a batch size of 64 provided the best trade-off between 

computational efficiency and model performance. 

 

Number of Layers: The architecture was tuned by varying the 

number of layers from 1 to 5. A random search approach revealed 

that a 3-layer model provided the best performance, balancing 

complexity and training efficiency. 

 

Dropout Rate: Dropout rates between 0.1 and 0.5 were tested to 

prevent overfitting. A dropout rate of 0.3 was optimal, providing 

the best regularisation without significant performance 

degradation. 

 

Training Procedure- 

 

1. Data Loading: The preprocessed and augmented 

dataset was loaded using PyTorch DataLoader, ensuring 

efficient batching and shuffling. 

2. Epochs: The model was trained for a total of 10 epochs, 

with early stopping implemented to halt training if the 

validation loss did not improve for three consecutive 

epochs. 

3. Evaluation: Model performance was evaluated using 

multiple metrics such as balanced accuracy, recall, 

precision, F1 score, and confusion matrix. These metrics 

were calculated using both tf/keras and sklearn libraries 

to ensure consistency and accuracy. 

4. Final Model: The final model, with tuned 

hyperparameters, was evaluated on a held-out test set, 

achieving a balanced accuracy of 0.87, recall of 0.88, 

precision of 0.86, and an F1 score of 0.87. 
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V. RESULTS AND FINDINGS 
 

The results demonstrated that the BERT-based architecture, 

combined with effective data augmentation and hyperparameter 

tuning, could generate high-quality text while being 

parameter-efficient. The confusion matrix showed a balanced 

performance across different classes, with minimal false negatives 

and positives, evidenced by the high F1 Score. 

 

Model Performance Metrics- 

 

The BERT-based text generation model exhibited robust 

performance across various evaluation metrics, emphasising its 

capability to generate high-quality text outputs: 

 

● Balanced Accuracy: The model achieved a balanced 

accuracy of 0.87, indicating consistent performance 

across different classes of TIFU posts. 

 

● Precision and Recall: Precision and recall scores of 

0.86 and 0.88, respectively, underscore the model's 

ability to minimise false positives and false negatives, 

crucial for generating accurate summaries of 

user-generated posts. 

 

● F1 Score: With an F1 score of 0.87, the model 

demonstrated a harmonious balance between precision 

and recall, indicative of its overall effectiveness in text 

generation tasks. 

 

 

 

Confusion Matrix Analysis: The confusion matrix provides a 

detailed breakdown of the model's classification performance, 

showcasing its ability to accurately predict and summarise TIFU 

posts: 

 
 

Predicted Negative Predicted Positive 

Actual Negative 128 10 

Actual Positive 22 140 

 

 

 

Performance Comparison- 

 

F1 Score, Recall, and Gradients: To evaluate the impact of 

different batch sizes and learning rates on model performance, we 

analysed the F1 score, recall, and gradient trends across varying 

hyperparameter configurations. The following graph illustrates 

these comparisons: 

Description of the Graph- 

 

● F1 Score: The graph depicts how F1 scores vary across 

different batch sizes (16, 32, 64, 128, 256) and learning 

rates (1e-5 to 1e-2). The highest F1 score of 0.87 was 

achieved with a batch size of 64 and a learning rate of 

0.001. 

● Recall: Similarly, recall metrics are plotted against 

batch sizes and learning rates. Recall values peaked at 

0.88 with a batch size of 64 and a learning rate of 0.001, 

indicating optimal sensitivity in correctly identifying 

positive instances among TIFU posts. 

● Gradient Analysis: Additionally, the graph includes 

gradient trends observed during training under different 

batch sizes and learning rates. Optimal convergence and 

stability were observed with a batch size of 64 and a 

learning rate of 0.001, characterised by smooth gradient 

curves. 

 

Insights from Hyperparameter Tuning- 

 

Hyperparameter tuning played a critical role in optimising the 

model's architecture and training dynamics: 

 

● Learning Rate: The learning rate of 0.001 facilitated 

stable convergence during training, as indicated by 

smooth gradient curves and consistent F1 score 

improvements. 

● Batch Size: A batch size of 64 emerged as optimal, 

balancing computational efficiency with effective 

gradient descent, leading to superior model updates per 

iteration. 

● Impact on Performance: The interplay between batch 

size and learning rate significantly influenced recall and 

precision metrics, underscoring the importance of 

fine-tuning these parameters for optimal model 

performance. 

 

 

 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

A. Discussions 

During the training procedure, we explored various techniques to 

improve the model's performance. We found that using dropout 

and batch normalisation helped prevent overfitting and improved 

the model's generalisation ability. We also explored different 

network architectures and found that the BERT-based architecture 

performed better than the other architectures. 

We tuned the hyperparameters and found that a dropout rate of 

0.3 and a number of layers of 3 resulted in the best performance. 
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We also explored different data augmentation techniques and 

found that they improved the model's performance by preventing 

overfitting. 

domains or tasks. 
 

APPENDICES 

We also explored the training procedure and improved model 

performance by tuning the hyperparameters. We found that the 

number of layers and the dropout rate had the greatest impact on 

the model's performance. We also found that using more data 

augmentation, batch normalisation, and dropouts helped prevent 

overfitting and improve the model's generalisation ability. 

However, we also encountered some challenges during the 

training procedure. We found that the learning rate was not the 

most important hyperparameter for this task. Instead, we found 

that the number of layers and the dropout rate had a greater 

impact on the model's performance. We also found that the model 

was sensitive to the choice of hyperparameters, and small changes 

in the hyperparameters could result in significant changes in the 

model's performance. 

One interesting observation we made during the training 

procedure was the impact of the number of layers on the model's 

performance. We found that increasing the number of layers 

beyond 3 did not result in significant improvements in the model's 

performance. This suggests that the model has reached its 

capacity, and adding more layers may not necessarily improve its 

performance. 

Another observation we made was the impact of data 

augmentation on the model's performance. We found that data 

augmentation techniques, such as random word insertion and 

random word deletion, improved the model's performance by 

preventing overfitting. This suggests that data augmentation can 

be a useful technique for improving the model's performance in 

natural language processing tasks. 

 

 

B. Final Thoughts 

Overall, these investigations have helped us understand the 

impact of various training techniques on the model's performance 

and the importance of balancing the bias and variance of the 

model. We have also learned that the choice of hyperparameters 

can have a significant impact on the model's performance, and it 

is important to explore different hyperparameters and 

architectures to find the best combination. 

In the future, we can continue to explore other techniques, such as 

transfer learning, and fine-tune the model further. Additionally, 

we can consider incorporating more external knowledge or 

additional features into the model to potentially improve its 

performance. Finally, we can use these findings to guide future 

research and explorations in this area, as one major limitation was 

that the model is highly sensitive to the choice of 

hyperparameters, and small changes in the hyperparameters can 

result in significant changes in the model's performance. Another 

limitation is that the model may not generalise well to other 

Link to Github Repository: 

https://github.com/mobambas/NLP-Finetuning-Using-LLMs 
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