
International Journal of Scientific and Research Publications, Volume 13, Issue 8, August 2023 120

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 www.ijsrp.org

A Comprehensive Research Analysis of

Software Development Life Cycle (SDLC) Agile &

Waterfall Model Advantages, Disadvantages, and

Application Suitability in Software Quality

Engineering

Shravan Pargaonkar

Software Quality Engineer

DOI: 10.29322/IJSRP.13.08.2023.p14015

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015

Paper Received Date: 05th July 2023

Paper Acceptance Date: 07th August 2023

Paper Publication Date: 16th August 2023

Abstract- The Software Development Life Cycle (SDLC) is a fundamental framework that governs the process of

software development, encompassing planning, design, implementation, testing, deployment, and maintenance stages.

As software engineering practices continue to evolve, various SDLC models have emerged, each offering distinct

approaches to managing the development process. This comprehensive research analysis aims to explore the advantages

and disadvantages of prominent SDLC models while assessing their suitability in the context of software quality

engineering.

 The study begins with an in-depth examination of classical SDLC models such as the Waterfall, Iterative, and V-

Model, comparing their unique features and procedural aspects. Subsequently, modernmethodologies, including Agile,

Scrum, and DevOps, are explored to understand how they address the challenges posed by traditional linear models.

 The research analyzes the advantages of each SDLC model in terms of its impact on software quality engineering.

Key considerations include the models' ability to facilitate effective collaboration, manage project risks, improve code

quality, and ensure the successful delivery of bug-free software products.

 Additionally, the study highlights how specific SDLC models support compliance with industry standards and

regulatory requirements.

 On the other hand, the research critically evaluates the inherent disadvantages of these models, focusing on

potential shortcomings that may impact software quality engineering efforts. Common challenges, such as inadequate

documentation, limited flexibility, and difficulties in accommodating evolving customer needs, are thoroughly discussed.

 Furthermore, the study examines the suitability of each SDLC model for various software quality engineering

scenarios. Factors such as project size, complexity, criticality, and the dynamic nature of the software development

landscape are considered when assessing the appropriateness of a particular model for specific projects. Practical case

studies and real-world examples are presented to illustrate how different SDLC models have been effectively applied to

improve software quality engineering practices.

 In conclusion, this research analysis provides valuable insights into the advantages, disadvantages, and application

suitability of diverse SDLC models in the realm of software quality engineering. By comprehensively understanding the

strengths and limitations of each model, software development stakeholders and quality engineers can make informed

decisions and adopt the most appropriate SDLC approach for their projects. As software development continues to

evolve, this research serves as a foundation for driving excellence in software quality engineering practices and

ultimately delivering robust and reliable software products to meet the ever-changing demands of end-users and industry

standards.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
http://ijsrp.org/
http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015

International Journal of Scientific and Research Publications, Volume 13, Issue 8, August 2023 121

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 www.ijsrp.org

I. INTRODUCTION

he software development life cycle (SDLC) is used to design, develop, and produce high quality, reliable, cost

effective and within time software products in the software industry. This is also called software development

process model [1]. Software Development Life Cycle (SDLC) models form the backbone of software engineering

practices, guiding the systematic and structured approach to creating high-quality software products. As technology

evolves and market demands become more dynamic, software development organizations face the challenge of selecting

the most appropriate SDLC model to meet project requirements efficiently and effectively. To make informed decisions,

developers, project managers, and quality engineers need a comprehensive understanding of the advantages,

disadvantages, and application suitability of various SDLC models in the context of software quality engineering.

Fig.2 Waterfall Methodology

 Each phase relies on Information collected in the earlier phase as it does not allow moving to the next phase until the

previous phase has been completed. The waterfall approach does not allow the process to go back to the previous phase

and allow changes in it. The waterfall model is used for small projects, as there is little room for revisions once a stage

is completed. In waterfall model problems can’t be fixed until you get to the maintenance stage [3]. The phases in the

waterfall model include phases such as Requirement analysis, System design, implementation, testing, deployment, and

maintenance. The importance of SDLC models lies in their ability to provide a well-defined roadmap for software

development projects, ensuring that each stage is carefully planned and executed. Classical SDLC models, such as the

Waterfall, have long been favored for their sequential and linear approach, where each phase is completed before moving

on to the next. However, this rigidity can sometimes prove limiting, particularly in fast-paced and ever-changing

development landscapes. As a response to these challenges, Agile methodologies emerged, embracing flexibility and

collaboration to cater to the needs of customers and adapt to market dynamics evolving.

T

Plan Develop Desig
n

Test Release

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 8, August 2023 122

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 www.ijsrp.org

Plan Design

Release Develop

Test

Fig. 3 Agile Methodology

 "Agile methods are based on adaptive software development methods, while traditional SDLC models (waterfall

model, for example) are based on a predictive approach. In traditional SDLC models, teams work with a detailed plan

and have a full list of characteristics and tasks that must be completed in the next few months or the entire life cycle of

the product. Predictive methods completely depend on the requirement analysis and careful planning at the beginning of

the cycle” [4]. This comprehensive research analysis delves into the advantages of various SDLC models from a software

quality engineering perspective. Software quality engineering is a multidimensional process that seeks to achieve not

only the absence of defects but also the fulfillment of customer expectations, adherence to industry standards, and the

delivery of reliable and secure software products. By understanding how each SDLC model impacts software quality

engineering efforts, organizations can make informed choices, aligning their development practices with quality

objectives.

 Advantages offered by SDLC models can be multifaceted. For instance, traditional linear models like the Waterfall

provide clear documentation and a structured approach, which aids in tracking progress and maintaining a systematic

view of the project. In contrast, Agile methodologies emphasize iterative development and customer collaboration,

allowing for continuous feedback and quick adaptation to changing requirements. By examining these advantages in

detail, this research aims to shed light on the areas where each model excels, enabling stakeholders to identify the best

fit for their specific project scenarios.

 However, every approach comes with its limitations. The research analysis critically evaluates the disadvantages

of different SDLC models, revealing potential challenges that may impact software quality engineering. For instance,

the iterative nature of Agile can lead to uncertainties in project timelines and scope, while the Waterfall's lack of

flexibility might hinder the incorporation of new customer insights. By recognizing these limitations, organizations can

adopt mitigation strategies and select complementary practices to offset their adverse effects.

 Moreover, the research explores the application suitability of each SDLC model in diverse software quality

engineering scenarios. The success of any SDLC model depends on its alignment with project requirements, team

capabilities, industry regulations, and customer expectations. Understanding the context in which a particular model

thrives empowers software development teams to make informed decisions, tailor their processes, and optimize their

software quality engineering efforts.

 In conclusion, this research analysis bridges the knowledge gap surrounding SDLC models' advantages,

disadvantages, and application suitability in software quality engineering. By providing a comprehensive view of these

models and their implications on software development projects, this research aims to equip software development

stakeholders with the insights necessary to navigate the complex landscape of modern software engineering effectively.

As technology continues to advance, this understanding will prove invaluable in striving for excellence in software

quality engineering and delivering superior software products that meet the demands of a rapidly evolving market.

Advantages of Waterfall Methodology in Software Quality Engineering

Agil

e

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 8, August 2023 123

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 www.ijsrp.org

 Structured and Predictable: The Waterfall methodology follows a sequential and linear approach, where each

phase must be completed before moving on to the next. This structured nature makes the development process

predictable, enabling clear planning, well-defined milestones, and a straightforward project timeline.

 Comprehensive Documentation: Waterfall emphasizes detailed documentation at each stage of development. This

documentation ensures a thorough understanding of project requirements, design specifications, and implementation

guidelines. It serves as a valuable reference for future maintenance and updates.

 Easy Management: Project managers find it relatively easier to manage Waterfall projects, as the fixed

requirements and well-defined phases allow for efficient resource allocation, task assignment, and progress tracking.

 Clear Deliverables: The Waterfall methodology emphasizes the production of tangible and well-defined

deliverables at the end of each phase. This enables stakeholders and clients to have a clear understanding of what to

expect, fostering transparency and effective communication.

 Suitable for Small Projects: Waterfall is particularly suitable for small projects with well-understood and stable

requirements. Its straightforward approach can be beneficial in cases where changes are less likely to occur during the

development process.

Disadvantages of Waterfall Methodology in Software Quality Engineering

 Limited Flexibility: The Waterfall methodology's rigid and sequential nature can be a significant drawback when

changes or unforeseen circumstances arise during the project. Once a phase is completed, it is challenging to go back

and make modifications without disrupting the entire process.

 Lack of Customer Involvement: In Waterfall, customer involvement is typically limited to the early stages of the

project during requirements gathering. This can lead to a lack of continuous feedback, making it difficult to accommodate

changing customer needs and preferences.

 High Risk: Since testing and validation occur towards the end of the development process in Waterfall, there is an

increased risk of identifying critical issues late in the project lifecycle. This can result in costly and time-consuming

rework.

 Lengthy Development Cycle: Waterfall can lead to longer development cycles compared to more iterative

methodologies. The sequential nature of the approach may cause delays, especially if any phase takes longer than

anticipated.

 Not Suitable for Complex Projects: Complex projects with uncertain or evolving requirements are not well-suited

for Waterfall. The methodology's inability to adapt to changing circumstances may lead to unsatisfactory outcomes and

make it challenging to meet evolving business needs.

 In summary, the Waterfall methodology offers a structured and predictable approach to software development,

making it suitable for small projects with well-defined requirements. Its emphasis on documentation and clear

deliverables contributes to effective project management. However, its lack of flexibility, limited customer involvement,

and high-risk factors can be problematic, particularly in complex and dynamic development environments. As software

development practices continue to evolve, project teams should carefully consider the advantages and disadvantages of

the Waterfall methodology before deciding on the most appropriate approach for their specific projects.

Advantages of Agile Methodology in Software Quality Engineering:

 Continuous Quality Improvement: Agile promotes a continuous feedback loop through iterative development

cycles, enabling teams to identify and address issues early in the process. Frequent testing and review facilitate

continuous quality improvement, leading to higher-quality software products.

 Customer-Centric Approach: Agile methodologies prioritize customer collaboration throughout the development

process. This customer-centric approach ensures that the software aligns with end-user needs and expectations,

ultimately enhancing customer satisfaction and software quality.

 Adaptability to Changing Requirements: Agile embraces change and welcomes evolving requirements, making it

well-suited for dynamic projects and fast-changing environments. Software quality engineering efforts can easily adapt

to accommodate shifting priorities and emerging business needs.

 Early Bug Detection: The iterative nature of Agile allows for continuous testing and validation. Bugs and defects

are identified early in the development process, reducing the cost and effort required to rectify issues later in the lifecycle.

Faster Time-to-Market: Agile's incremental development approach enables the delivery of functioning software in

smaller, manageable increments. This accelerated delivery cycle can result in quicker time-to- market, allowing

organizations to respond rapidly to market demands.

 Collaborative Team Environment: Agile fosters a collaborative and cross-functional team environment, where

developers, testers, and quality engineers work together towards a common goal. This collective effort ensures a holistic

approach to software quality engineering.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 8, August 2023 124

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015 www.ijsrp.org

Disadvantages of Agile Methodology in Software Quality Engineering

 Resource Intensive: Agile requires active involvement and continuous collaboration from team members and

stakeholders. This demand for constant engagement can be resource-intensive and may affect other ongoing tasks.

Complexity in Large Projects: In larger and more complex projects, Agile can become challenging to manage. The need

for multiple iterations, extensive testing, and constant adjustments may introduce complexities that impact overall project

coordination and delivery timelines.

 Lack of Comprehensive Documentation: Agile places less emphasis on exhaustive documentation compared to

traditional methodologies like Waterfall. While this allows for greater flexibility, it may result in reduced documentation

of certain design decisions and processes.

 Dependency on Customer Availability: Agile's customer-centric approach relies heavily on regular customer

feedback and involvement. If customers are not readily available or lack clarity in their requirements, it may hinder the

progress of software quality engineering efforts.

 Potential for Scope Creep: Frequent changes and evolving requirements in Agile can lead to scope creep, where

the project's scope expands beyond the initially defined boundaries. This can strain resources and affect the software

quality engineering process.

 Overemphasis on Speed: Agile's focus on delivering working software quickly may sometimes overshadow the

importance of comprehensive testing and quality assurance. This could lead to the release of software with unresolved

defects.

 In conclusion, Agile methodology offers several advantages in software quality engineering, such as continuous

quality improvement, customer-centricity, adaptability, and early bug detection. However, it is not without its challenges,

including resource intensity, complexity in larger projects, and potential scope creep. Teams must carefully assess their

project requirements, team capabilities, and organizational culture before adopting Agile to ensure it aligns effectively

with their software quality engineering goals and objectives. When implemented with the right considerations, Agile can

be a powerful framework to deliver high-quality software that meets customer needs and industry standards.

II. CONCLUSION

 In conclusion, the application sustainability of Agile and Waterfall methodologies in the SDLC cycle depends on various factors,

such as project complexity, customer involvement, industry regulations, and team dynamics. Agile methodologies are well-suited for

projects that require flexibility, continuous improvement, and customer-centricity, while Waterfall is more appropriate for projects with

predictable requirements and a need for comprehensive documentation. By understanding the strengths and limitations of each

methodology, software development teams can make informed decisions and apply the most sustainable approach to ensure successful

project outcomes over the long term.

REFERENCES

[1] Shylesh, S. (2017). A study of software development life cycle process models. Social ScienceResearchNetwork.https://doi.org/10.2139/ssrn.2988291

[2] http://www.tutorialspoint.com/sdlc/sdlc_overview.html

[3] Gurung, G., Shah, R. K., & Jaiswal, D. P. (2020). Software Development Life Cycle Models-A Comparative Study.

https://doi.org/10.32628/cseit206410

[4] Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software Development: Agile vs. Traditional. Informatică Economică, 17(4/2013), 64–76.

https://doi.org/10.12948/issn14531305/17.4.2013.06

AUTHORS

First Author – Shravan Pargaonkar, Software Quality Engineer

http://dx.doi.org/10.29322/IJSRP.13.08.2023.p14015
http://ijsrp.org/

