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Abstract- Functionally graded materials (FGMs) are categorized as functional composites, where the volume fractions of two or more 

materials change continuously based on position along specific dimensions (mainly through-the -thickness) of the structure to achieve 

desired functionality. A typical example of FGM is an inhomogeneous composite consisting of distinct phases of material constituents 

(e.g., ceramics and metals for thermal barrier structures), featuring a strong bending-stretching coupling effect. The overall properties 

of FGMs are unique and distinguishable from the individual materials comprising them. Mechanical properties exhibit continuous 

variation across the plate's thickness. Variations in constituent volume fractions lead to diverse microstructures. The effective properties 

of FGM plates are assumed to change along the thickness direction, following power law, sigmoid, and exponential distributions. FGMs 

are created by altering chemical composition, microstructure, or design features from one end to the other as required. They exhibit 

high-temperature resistance, efficiently mitigating thermal stresses and moisture impacts. The variation in volume fraction throughout 

the thickness is computed using different homogenization techniques, namely the rule of mixtures, Mori-Tanaka scheme, and self-

consistent method. Several micromechanical models have been developed and utilized to estimate effective properties of these materials 

in relation to volume fraction distributions. The manipulated variable concerns the concentration of reinforcing particles at various points 

within the component. This study delves into various methods and theories for modeling and analyzing functionally graded materials, 

offering a comprehensive exploration of their features. The outcomes and new findings of this analysis are presented. 

 

Index Terms- Effective material properties, FGM, homogenization, Volume fractions, Mori–Tanaka scheme, Rule of mixtures, Power 

law, Sigmoid law. 

 

I. INTRODUCTION 

n recent years, the demand for improved structural efficiency in aerospace engineering applications has led to the emergence of a new 

class of materials known as functionally graded materials (FGMs). FGMs are designed in a manner where material properties vary 

smoothly and continuously through-the-thickness, transitioning from the surface of a ceramic exposed to high temperatures to that of a 

metal on the opposite surface. They have been developed for general use as structural components in high-temperature environments. 

The composition of FGMs involves two distinct materials: an engineering ceramic, which resists thermal loading from the high-

temperature environment, and a lightweight metal that maintains structural toughness. The primary objective of FGM development is 

to create materials capable of withstanding extreme temperatures, allowing ceramics to function as refractories (materials with excellent 

heat resistance) when combined with other substances. However, ceramics alone cannot be employed for engineering structures 

subjected to substantial mechanical loads due to their poor toughness properties. To address this limitation, ceramics need to be combined 

with materials possessing good toughness properties, such as metals and polymers, in order to leverage the advantages of each material. 

Composite materials are extensively employed in engineering applications due to their inherent mechanical properties, including high 

strength, modulus of elasticity, and lower specific gravity. The advancement of new composite materials with enhanced physical and 

mechanical properties has become achievable through extensive studies and research on the metallurgical aspects of materials, coupled 

with a better understanding of structural properties. One such material with the potential to meet specific requirements in various 

engineering applications and harness the benefits of individual material properties is the functionally graded material (FGM). This 

potential is rooted in the changing material composition of FGMs, which follows a defined law in a preferred direction. 

       FGMs find application in the design of aerospace structures, heat engine components, and nuclear power plants. Numerous research 

papers have been published to assess the behavior of FGMs using both experimental and numerical techniques, encompassing linearity 
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and nonlinearity across various domains. FGMs can be produced by gradually and continuously adjusting the constituents of multiphase 

materials according to a predetermined profile. The power law function, sigmoid function, and exponential function are commonly used 

by researchers to describe effective material properties.  

      Delale and Erdogan [1] indicated that the effect of Poisson's ratio on deformation is much less compared to that of Young's modulus. 

The primary concern in the mechanics of FGM materials is predicting the material's behavior. This requires estimating the effective 

(overall) properties of the composition throughout the thickness, a concept commonly known as homogenization. The effective elastic 

moduli of the graded microstructures must be evaluated using the volume fraction distribution and the approximate shape of the dispersed 

phase when precise information about the size, shape, and distribution of phases is not available. Over the years, several micromechanical 

models have been developed to describe the effective properties of both macroscopically homogeneous composites and functionally 

graded materials [2-5]. The rule of mixtures, also known as the Voigt model [6-9], is the most popular and widely used model to estimate 

through-the-thickness properties of FGMs. Mori–Tanaka homogenization scheme [10-14], and self-consistent schemes [9, 15-17] were 

reported in the literature and used to determine the bounds for the effective properties of FGM. Comparisons have been made with 

reference to the self-consistent scheme. However, there is a scarcity of comparison between the results obtained from these models with 

analytical solutions or experimental results. Results obtained from the open literature indicate that the Voigt and Mori–Tanaka schemes 

have been adopted for studying FGM structures by most researchers [18-20]. Reddy and Cheng [21] have considered the variation of 

material properties through the thickness according to a power-law distribution, and the locally effective material properties obtained in 

terms of the volume fractions of the constituents by the Mori–Tanaka scheme. These works focus on the parametric effects of the power-

law index or other parameters of the models on the response of FGM composite. Moreover, it has been observed that while many 

researchers use the rule of mixtures with a power-law approach for material homogenization, only a few have attempted a comparison 

of the rule of mixture with the Mori–Tanaka scheme. 

       The goal of this study is to understand the influence of a homogenization scheme (effective material properties through the 

thickness) and to identify simple models that provide accurate estimates of effective properties over the entire range of volume fractions 

with minimal or no empirical fitting parameters and minimal computational effort. Three homogenization schemes, namely the rule of 

mixtures, the Mori–Tanaka scheme, and the self-consistent scheme, have been used to estimate the effective properties. The material 

properties of the plate are considered to vary according to a power-law distribution across the thickness of the plate. 

Problem description 

       An elastic rectangular plate is considered, characterized by coordinates 𝑥, 𝑦, and 𝑧. The 𝑥𝑦 plane defines the plate's plane, while the 

z-axis represents its thickness direction. The material properties, including Young’s modulus and Poisson’s ratio, are known on both the 

upper and lower surfaces, tailored to the design requirements. These material properties, such as Young’s modulus and Poisson’s ratio, 

exhibit continuous variation along the thickness direction (𝑧-axis), denoted as 𝐸 =  𝐸(𝑧) and 𝑣 =  𝑣(𝑧) respectively. This type of 

material configuration is referred to as a functionally graded material. 

       As shown in Figure 1, the composite structure comprises metal the bottom surface to impart toughness and ceramics at the top 

surface to provide refractoriness, each serving specific purposes within the design. 

 

 
Fig 1: Description of functionally graded plate FGM [22]. 

 

Power law distribution 

       In a two-constituent metal-ceramic functionally graded material (FGM) layer, where the volume fractions of the constituent phases 

are distributed throughout the layer thickness, a prescribed distribution can be established using a typical power-law function. For an 

FGM layer that is rich in ceramics on its upper surface, the volume fraction 𝑉𝑐(𝑧) of the functional graded material follows power-law 

functions as defined below. 

𝑉𝑐(𝑧) = 𝑉𝑐
𝑏 + (𝑉𝑐

𝑡 − 𝑉𝑐
𝑏) (

1

2
+

𝑧

ℎ
)

𝑛

                                          1a 

 

       For a FGM layer ceramic-rich on its bottom surface, the volume fraction 𝑉𝑐(𝑧) of functional graded material is given by 
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𝑉𝑐(𝑧) = 𝑉𝑐
𝑡 + (𝑉𝑐

𝑏 − 𝑉𝑐
𝑡) (

1

2
+

𝑧

ℎ
)

𝑛

                                      2b 

where 𝑉𝑐
𝑡 and 𝑉𝑐

𝑏 are the volume fractions of the ceramic phase on the top and bottom surfaces of the FGM laminae respectively, and n 

is a scalar parameter or power law index that dictates the material gradation profile through the layer thickness. The most commonly 

used FGM layer metal-ceramic FGM with ceramic-rich on its top surface with 𝑉𝑐
𝑡 = 1 and 𝑉𝑐

𝑏 = 0, and metal rich on its bottom surface 

with  𝑉𝑚
𝑡 = 0 and 𝑉𝑚

𝑏 = 1.  
       Hence the volume fraction of the metal phase 𝑉𝑚(𝑧) and ceramic phase are subsequently defined since 𝑉𝑐(𝑧) + 𝑉𝑚(𝑧) = 1, in other 

words 0≤ 𝑉𝑐(𝑧) ≤ 1 and 0 ≤ 𝑉𝑚(𝑧) ≤ 1. 

 

Sigmoid law distribution 

       Due to the continuous change in the volume fraction of the constituent materials within the Functionally Graded Material (FGM), 

the material properties vary continuously through the thickness direction according to a sigmoid function. In the case of a single power-

law function, stress concentrations appear at one of the interfaces where the material is continuous but changes rapidly across the 

interface. To address this, the volume fraction is calculated using two power-law functions, ensuring that the material properties are 

smoothly distributed across the interfaces. 

𝑉𝑐(𝑧) =
1

2
(1 +

2𝑧

ℎ
)

𝑛

                  0 ≤ 𝑧 ≤
ℎ

2
                               2a 

𝑉𝑐(𝑧) = 1 −
1

2
(1 −

2𝑧

ℎ
)

𝑛

                   −
1

2
≤ 𝑧 ≤ 0                            2b 

 

Exponential Law 

       The mechanical material properties vary continuously throughout the thickness direction exponentially, in accordance with the 

volume fraction of constituents. This function is more convenient than a power law because it lacks a power index, and the properties 

of the Functionally Graded Material (FGM) depend solely on ceramic and material properties. It directly generates the Young’s modulus 

and other material properties across the thickness without the need to calculate the volume fraction first. This approach is most suitable 

for fracture mechanics problems.  

𝐸(𝑧) = 𝐸𝑡 (exp (
1

ℎ
𝑙𝑛

𝐸𝑏

𝐸𝑡
) (𝑧 +

ℎ

2
))                                      3a 

𝑣(𝑧) = 𝑣𝑡 (exp (
1

ℎ
𝑙𝑛

𝑣𝑏

𝑣𝑡
) (𝑧 +

ℎ

2
))                                    3b 

where h is the non-dimensional thickness of the plate and z is a point through the thickness. 

 

Homogenization techniques 

       Homogenization techniques encompass various methods used to estimate the effective properties at a given point in a material. 

These techniques include the rule of mixture, Mori–Tanaka method, self-consistent method, and more. These methods are commonly 

applied to estimate the effective material properties of functionally graded composites. 

 

Rule of mixture 

       The rule of mixture, often associated with the Voigt model, involves estimating the effective properties of a composite material, 

such as a metal-ceramic functionally graded material (FGM) composed of aluminum and silicon carbide. This estimation is achieved by 

calculating a weighted average based on the volume fractions of the respective constituents' properties. The properties derived from this 

model serve as both the upper and lower bounds for the effective elastic properties of the heterogeneous material. 

𝑃(𝑧) = ∑ 𝑃𝑖

𝑘

𝑖

𝑉𝑐(𝑖)(𝑧) 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏)𝑉𝑐(𝑧) + 𝑃𝑏                                                  4 

where 𝑃(𝑧) is any material property through the thickness 𝑧, 𝑃𝑡 and 𝑃𝑡 are the properties at top and bottom surface of the plate 

respectively, 𝑘 is the number of the material phase to be homogenized. 

The mechanical material properties of a FGM can be determined by the rule of mixture as shown below 

𝐸(𝑧) = (𝐸𝑡 − 𝐸𝑏)𝑉𝑐(𝑧) + 𝐸𝑏                                        5a 

𝑣(𝑧) = (𝑣𝑡 − 𝑣𝑏)𝑉𝑐(𝑧) + 𝑣𝑏                                        5b 

Hence, 𝐸(𝑧) is the effective modulus of elasticity, 𝑣(𝑧) is Poisson’s ratio, each varying through the thickness. For a given isotropic 

material, bulk modulus and shear modulus are estimate as shown below in eq. (6) 

𝐵(𝑧) =
𝐸(𝑧)

3(1−2𝑣(𝑧)
                                                  6a 

𝐺(𝑧) =
𝐸(𝑧)

2(1+2𝑣(𝑧)
                                                 6b 

where 𝐵(𝑧) is the bulk modulus 𝐺(𝑧) is the shear modulus. 

When hygro-thermo-mechanical properties are considered, the following additional quantities are incorporated as shown in eq. (7) 

𝛼(𝑧) = (𝛼𝑡 − 𝛼𝑏)𝑉𝑐(𝑧) + 𝛼𝑏 
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𝑘(𝑧) = (𝑘𝑡 − 𝑘𝑏)𝑉𝑐(𝑧) + 𝑘𝑏 

𝛽(𝑧) = (𝛽𝑡 − 𝛼𝑏)𝑉𝑐(𝑧) + 𝛽𝑏                                                     7                                                       

𝐷(𝑧) = (𝐷𝑡 − 𝐷𝑏)𝑉𝑐(𝑧) + 𝐷𝑏 

where 𝛼(𝑧) are coefficients of thermal expansion, 𝑘(𝑧) are coefficients of thermal conductivity coefficient, 𝛽(𝑧) are coefficients of 

moisture expansion, and 𝐷(𝑧) are the coefficients of mass diffusivity  

when density and yield strength are considered, eq. (8) hold 

𝜌(𝑧) = (𝜌𝑡 − 𝜌𝑏)𝑉𝑐(𝑧) + 𝜌𝑏                                                   8a 

𝜎𝑦(𝑧) = (𝜎𝑦𝑡 − 𝜎𝑦𝑏)𝑉𝑐(𝑧) + 𝜎𝑦𝑏                                                 8b 

where 𝜌(𝑧) is the dry mass density, and 𝜎𝑦(𝑧) is the ultimate yield strength. The subscript 𝑏  denotes the bottom surface i.e., the metal 

phase, and the subscript 𝑡 denotes the top surface i.e., the ceramic phase. 

 

Mori-Tanaka technique 

The Mori-Tanaka method [12, 23] is particularly suitable for a graded composite microstructure that possesses a well-defined, 

continuous, isotropic matrix phase. This matrix phase is reinforced by a random distribution of isotropic particles from a particulate 

phase. The following equations are used to estimate the effective material properties of a functionally graded material using the 

aforementioned technique. 
𝐵(𝑧)−𝐵1

𝐵2−𝐵1
=

𝑉2(𝑧)

1+(1−𝑉2(𝑧)
𝐵2−𝐵1

𝐵1+
4
3𝐺1

                                                   9a 

𝐺(𝑧)−𝐺1

𝐺2−𝐺1
=

𝑉2(𝑧)

1+(1−𝑉2(𝑧)
𝐺2−𝐺1
𝐺1+𝑓1

                                                    9b 

𝛼(𝑧)−𝛼1

𝛼2−𝛼1
=

1

𝐵(𝑧)
−

1

𝐵1
1

𝐵2
−

1

𝐵1

                                                           10b 

𝑘(𝑧)−𝑘1

𝑘2−𝑘1
=

𝑉2(𝑧)

1+(1−𝑉2(𝑧)
𝑘2−𝑘1

3𝑘1

                                                 10b 

𝛽(𝑧)−𝛽1

𝛽2−𝛽1
=

1

𝐵(𝑧)
−

1

𝐵1
1

𝐵2
−

1

𝐵1

                                                      11a 

𝐷(𝑧)−𝐷1

𝐷2−𝐷1
=

𝑉2(𝑧)

1+(1−𝑉2(𝑧)
𝐷2−𝐷1

3𝐷1

                                              11b 

𝐸(𝑧) =
9𝐵(𝑧)𝐺(𝑧)

3𝐵(𝑧)+𝐺(𝑧)
                                                     12a 

𝑣(𝑧) =
3𝐵(𝑧)−2𝐺(𝑧)

2(3𝐵(𝑧)+𝐺(𝑧))
                                                   12b 

where 𝑓1 =
𝐺1(9𝐵𝑡−8𝐺𝑡)

6(𝐵𝑡−2𝐺𝑡)
, 𝐸(𝑧) is the effective Young’s modulus, 𝑣(𝑧) is Poisson’s ratio, 𝐵(𝑧) is the bulk modulus, 𝐺(𝑧) is the shear 

modulus, 𝛼(𝑧) is thermal expansion coefficient, 𝑘(𝑧) is thermal conductivity coefficient, 𝐷(𝑧) is the mass diffusivity coefficients, 𝛽(𝑧) 

moisture expansion coefficients. Subscript 1 denotes the matrix phase (metal), and subscript 2 denotes the particulate phase (ceramics). 

In the numerical results, the metal is taken as the matrix phase and the ceramic is taken as the particulate phase. The volume fraction of 

the ceramic phase is given by 

𝑉2(𝑧) = 𝑉𝑐(𝑧) = 𝑉𝑐
𝑡 + (𝑉𝑐

𝑏 − 𝑉𝑐
𝑡) (

1

2
+

𝑧

ℎ
)

𝑛

                                         13 

where t (ceramic), and b (metal) correspond to 2 and 1 respectively. 

 

Self-consistent estimate 

The Self-Consistent estimate homogenization scheme was initially developed to estimate the equivalent stiffness of polycrystals while 

considering the interaction between the matrix and the grains, following Eshelby’s formulation. This approach is based on the concept 

that the presence of a single inhomogeneity does not significantly alter the effective material properties within a system containing 

numerous inclusions [24]. Self-Consistent models are often referred to as embedding models, as they assume that each reinforcing 

inclusion is embedded within a continuous material, with the composite's effective properties being those of this continuum. This method 

does not differentiate between the matrix and reinforcement phases, resulting in the prediction of the same overall moduli in another 

composite where the roles of the phases are switched. As a result, this approach is particularly useful for determining the effective 

moduli in regions characterized by an interconnected skeletal microstructure. The implicit expressions for bulk modulus and shear 

modulus are provided below. 

𝐵(𝑧) = (
𝑉1

(𝐵1+
4𝐺(𝑧)

3
)

+
𝑉2

(𝐵2+
4𝐺(𝑧)

3
)

−
4𝐺(𝑧)

3
)

−1

                                   14a 

𝑉1𝐵1

(𝐵1+
4𝐺(𝑧)

3
)

+
𝑉2𝐵2

(𝐵2+
4𝐺(𝑧)

3
)

= −5 (
𝑉1𝐺2

𝐺(𝑧)−𝐺2
+

𝑉2𝐺1

𝐺(𝑧)−𝐺1
) − 2                         14b 

The self-consistent estimate of the thermal coefficients conductivity in the implicit form 
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𝑉1(𝐵1−𝑘(𝑧)

𝑘1+2𝑘(𝑧)
+

𝑉2(𝐵2−𝑘(𝑧)

𝑘2+2𝑘(𝑧)
= 0                                          15a 

𝛼(𝑧)−𝛼1

𝛼2−𝛼1
=

1

𝐵(𝑧)
−

1

𝐵1
1

𝐵2
−

1

𝐵1

                                                    15b 

Due to the rigorous process involve in solving the quadratic equations in eq. (14a) and eq. (14b), it is easier to use the rule of mixture 

and Mori-Tanaka technique than Self-consistent method to estimate the effective material properties of functionally graded composite. 

      Other techniques use to analyze the effective material properties of functionally graded material are given in details in [25], are 

composite sphere assemblage model, composite cylindrical assemblage model, the simplified strength of materials method, the method 

of cells, micromechanical models, mathematical idealization of FGMs. 

 

Numerical results and discussion 

       The following tables and plot show the  through-thickness variation of the volume fraction of the metal-ceramic  and Monel-zirconia 

FGM for power indices n=0.4, 0.8, 1,2, 1.8, 2.8, and 6. The material properties used for our analysis are shown.  

 

Table 1: Mechanical and thermal properties of the materials used have the following values [26]. 

 

Material  property Aluminum Silicon Carbide Monel Zirconia 

𝑬𝟏𝟏                             𝑮𝑷𝒂 70 427.0 179.4 151.0 

𝑬𝟐𝟐 = 𝑬𝟑𝟑                  𝑮𝑷𝒂 70 427.0 179.4 151.0 

𝑮𝟏𝟐 = 𝑮𝟏𝟑                  𝑮𝑷𝒂 26.923 182.479 65.55 58.077 

𝑮𝟐𝟑                             𝑮𝑷𝒂 26.923 182.479 65.55 58.077 

𝒗𝟏𝟐 = 𝒗𝟏𝟑 = 𝒗𝟐𝟑        ---- 0.3 0.17 0.3684 0.30 

𝜶𝟏                          𝟏𝟎−𝟔/𝑲 23.4 4.3 15 10 

𝜶𝟐 =  𝜶𝟑               𝟏𝟎−𝟔/𝑲 23.4 4.3 15 10 

𝒌𝟏𝟏                        𝑾/(𝒎𝑲) 233 65 25 2.09 

𝒌𝟐𝟐 =  𝒌𝟐𝟐            𝑾/(𝒎𝑲) 233 65 25 2.09 

𝜷𝟏                  𝟏𝟎−𝟒/(Kg/𝒎𝟑) 4.0 
1.481 

0.01 
0.003 

4.0 
0.455 

0.01 
0.002 

𝜷𝟐 =  𝜷𝟑        𝟏𝟎−𝟒/(Kg/𝒎𝟑) 4.0 
1.481 

0.01 
0.003 

4.0 
0.455 

0.01 
0.002 

𝑫𝟏𝟏               𝟏𝟎−𝟏𝟐(𝒎𝟐)/𝒔) 0.02 0.2 0.02 0.02 

𝑫𝟐𝟐 =  𝑫𝟑𝟑   𝟏𝟎−𝟏𝟐(𝒎𝟐)/𝒔 0.02 0.2 0.02 0.02 

𝒑𝒅𝒓𝒚                     kg/𝒎𝟑 2700 3210 8800 5700 

 

 

Case 1; Rule of mixture 

       The results of the effective material properties of case 1 computed using the power  law index distribution are presented. Table 1.1-

1.4 and fig 1.1-1.4 describe the variation of  effective material properties through-the-thickness. 

 

Table 1.1:  Power law index n and corresponding volume fraction through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1 1 1 1 1 1 

0.0125 0.9658 0.9328 0.9009 0.8550 0.7838 0.5933 

0.0100 0.9297 0.8643 0.8035 0.7202 0.6002 0.3349 

0.0075 0.8913 0.7944 0.7081 0.5958 0.4469 0.1780 

0.0050 0.8503 0.7230 0.6147 0.4820 0.3213 0.0878 
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0.0025 0.8061 0.6497 0.5237 0.3790 0.2211 0.0394 

0 0.7579 0.5743 0.4353 0.2872 0.1436 0.0156 

-0.0025 0.7046 0.4964 0.3497 0.2068 0.0862 0.0052 

-0.0050 0.6444 0.4152 0.2676 0.1384 0.0461 0.0014 

-0.0075 0.5743 0.3299 0.1895 0.0825 0.0206 2.4414e-04 

-0.0100 0.4884 0.2385 0.1165 0.0397 0.0066 2.1433e-05 

-0.0125 0.3701 0.1370 0.0507 0.0114 9.5125e-04 3.3490e-07 

-0.0150 0 0 0 0 0 0 

 

Table 1.2:  Power law index n and corresponding elasticity modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 

0.0125 4.1479e+11 4.0299e+11 3.9160e+11 3.7525e+11 3.4981e+11 2.8181e+11 

0.0100 4.0189e+11 3.7855e+11 3.5685e+11 3.2712e+11 2.8427e+11 1.8956e+11 

0.0075 3.8819e+11 3.5361e+11 3.2278e+11 2.8271e+11 2.2953e+11 1.3354e+11 

0.0050 3.7355e+11 3.2810e+11 2.8946e+11 2.4207e+11 1.8471e+11 1.0134e+11 

0.0025 3.5776e+11 3.0195e+11 2.5697e+11 2.0531e+11 1.4893e+11 8.4066e+10 

0 3.4056e+11 2.7504e+11 2.2539e+11 1.7252e+11 1.2126e+11 7.5578e+10 

-0.0025 3.2153e+11 2.4721e+11 1.9486e+11 1.4384e+11 1.0077e+11 7.1868e+10 

-0.0050 3.0005e+11 2.1824e+11 1.6553e+11 1.1941e+11 8.6471e+10 7.0490e+10 

-0.0075 2.7504e+11 1.8777e+11 1.3764e+11 9.9442e+10 7.7360e+10 7.0087e+10 

-0.0100 2.4434e+11 1.5514e+11 1.1158e+11 8.4190e+10 7.2365e+10 7.0008e+10 

-0.0125 2.0213e+11 1.1890e+11 8.8099e+10 7.4075e+10 7.0340e+10 7.0000e+10 

-0.0150 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 
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Table 1.3:  Power law Index and corresponding Poisson’s ratio through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 

0.0125 0.1744 0.1787 0.1829 0.1888 0.1981 0.2229 

0.0100 0.1791 0.1876 0.1955 0.2064 0.2220 0.2565 

0.0075 0.1841 0.1967 0.2080 0.2225 0.2419 0.2769 

0.0050 0.1895 0.2060 0.2201 0.2373 0.2582 0.2886 

0.0025 0.1952 0.2155 0.2319 0.2507 0.2713 0.2949 

0 0.2015 0.2253 0.2434 0.2627 0.2813 0.2980 

-0.0025 0.2084 0.2355 0.2545 0.2731 0.2888 0.2993 

-0.0050 0.2162 0.2460 0.2652 0.2820 0.2940 0.2998 

-0.0075 0.2253 0.2571 0.2754 0.2893 0.2973 0.3000 

-0.0100 0.2365 0.2690 0.2849 0.2948 0.2991 0.3000 

-0.0125 0.2519 0.2822 0.2934 0.2985 0.2999 0.3000 

-0.0150 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 

 

Table 1.4:  Power law Index (n) and corresponding coefficient of thermal deformation through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 

0.0125 4.9533e-06 5.5843e-06 6.1937e-06 7.0690e-06 8.4299e-06 1.2068e-05 

0.0100 5.6434e-06 6.8922e-06 8.0533e-06 9.6435e-06 1.1936e-05 1.7003e-05 

0.0075 6.3761e-06 8.2266e-06 9.8759e-06 1.2020e-05 1.4865e-05 2.0001e-05 

0.0050 7.1596e-06 9.5911e-06 1.1658e-05 1.4194e-05 1.7263e-05 2.1723e-05 

0.0025 8.0043e-06 1.0990e-05 1.3397e-05 1.6161e-05 1.9177e-05 2.2647e-05 

0 8.9249e-06 1.2430e-05 1.5086e-05 1.7915e-05 2.0657e-05 2.3102e-05 
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-0.0025 9.9430e-06 1.3919e-05 1.6720e-05 1.9449e-05 2.1754e-05 2.3300e-05 

-0.0050 1.1092e-05 1.5469e-05 1.8289e-05 2.0756e-05 2.2519e-05 2.3374e-05 

-0.0075 1.2430e-05 1.7099e-05 1.9781e-05 2.1825e-05 2.3006e-05 2.3395e-05 

-0.0100 1.4072e-05 1.8845e-05 2.1175e-05 2.2641e-05 2.3273e-05 2.3400e-05 

-0.0125 1.6331e-05 2.0784e-05 2.2432e-05 2.3182e-05 2.3382e-05 2.3400e-05 

-0.0150 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 

 

 
Fig 1.1: Through-the-thickness distribution of the volume fraction of the ceramic phase in the functionally graded plate. 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120
http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 13, Issue 9, September 2023              136 

ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120    www.ijsrp.org 

 
Fig 1.2: Variation of Young’s modulus with the non-dimensional thickness for different values of power index n. 

 
Fig 1.3: Variation of Poisson’s ratio with the non-dimensional thickness for different values of power index n. 
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Fig 1.4: Variation of coefficient of thermal deformation with the non-dimensional thickness for different values of power index 

n. 

 

Result of case 1 with Sigmoid law distribution 

       The results of the effective material properties of case 1 computed using the sigmoid law distribution are presented. Table 1.5-1.8 

and fig 1.5-1.8 describe the smooth transfer of material properties across the interface unlike the ones obtained using one single power 

law index. 

 

Table 1.5:  Sigmoid Law Distribution index n and corresponding volume fraction through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1 1 1 1 1 1 

0.0125 0.7558 0.8808 0.9418 0.9801 0.9967 1.0000 

0.0100 0.6778 0.7924 0.8662 0.9308 0.9769 0.9993 

0.0075 0.6211 0.7128 0.7824 0.8564 0.9282 0.9922 

0.0050 0.5749 0.6385 0.6926 0.7590 0.8393 0.9561 

0.0025 0.5352 0.5679 0.5983 0.6399 0.6999 0.8326 

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

-0.0025 0.4648 0.4321 0.4017 0.3601 0.3001 0.1674 

-0.0050 0.4251 0.3615 0.3074 0.2410 0.1607 0.0439 

-0.0075 0.3789 0.2872 0.2176 0.1436 0.0718 0.0078 
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-0.0100 0.3222 0.2076 0.1338 0.0692 0.0231 6.8587e-04 

-0.0125 0.2442 0.1192 0.0582 0.0199 0.0033 1.0717e-05 

-0.0150 0 0 0 0 0 0 

 

 

Table 1.6:  Sigmoid Law Distribution index (n) and corresponding Young’s modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 4.2700e+11 

0.0125 3.3983e+11 3.8443e+11 4.0621e+11 4.1990e+11 4.2582e+11 4.2700e+11 

0.0100 3.1198e+11 3.5288e+11 3.7924e+11 4.0229e+11 4.1876e+11 4.2676e+11 

0.0075 2.9172e+11 3.2448e+11 3.4930e+11 3.7574e+11 4.0137e+11 4.2421e+11 

0.0050 2.7522e+11 2.9795e+11 3.1727e+11 3.4097e+11 3.6964e+11 4.1133e+11 

0.0025 2.6105e+11 2.7273e+11 2.8358e+11 2.9844e+11 3.1987e+11 3.6722e+11 

0 2.4850e+11 2.4850e+11 2.4850e+11 2.4850e+11 2.4850e+11 2.4850e+11 

-0.0025 2.3595e+11 2.2427e+11 2.1342e+11 1.9856e+11 1.7713e+11 1.2978e+11 

-0.0050 2.2178e+11 1.9905e+11 1.7973e+11 1.5603e+11 1.2736e+11 8.5671e+10 

-0.0075 2.0528e+11 1.7252e+11 1.4770e+11 1.2126e+11 9.5630e+10 7.2789e+10 

-0.0100 1.8502e+11 1.4412e+11 1.1776e+11 9.4707e+10 7.8236e+10 7.0245e+10 

-0.0125 1.5717e+11 1.1257e+11 9.0790e+10 7.7095e+10 7.1183e+10 7.0004e+10 

-0.0150 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 

 

 

Table 1.7:  Sigmoid Law Distribution index (n) and corresponding Poisson’s ratio through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 

0.0125 0.2017 0.1855 0.1776 0.1726 0.1704 0.1700 

0.0100 0.2119 0.1970 0.1874 0.1790 0.1730 0.1701 
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0.0075 0.2193 0.2073 0.1983 0.1887 0.1793 0.1710 

0.0050 0.2253 0.2170 0.2100 0.2013 0.1909 0.1757 

0.0025 0.2304 0.2262 0.2222 0.2168 0.2090 0.1918 

0 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 

-0.0025 0.2396 0.2438 0.2478 0.2532 0.2610 0.2782 

-0.0050 0.2447 0.2530 0.2600 0.2687 0.2791 0.2943 

-0.0075 0.2507 0.2627 0.2717 0.2813 0.2907 0.2990 

-0.0100 0.2581 0.2730 0.2826 0.2910 0.2970 0.2999 

-0.0125 0.2683 0.2845 0.2924 0.2974 0.2996 0.3000 

-0.0150 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 

 

Table 1.8:  Sigmoid Law Distribution index (n) and corresponding coefficients of thermal deformation through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 4.3000e-06 

0.0125 8.9638e-06 6.5776e-06 5.4123e-06 4.6796e-06 4.3633e-06 4.3002e-06 

0.0100 1.0454e-05 8.2656e-06 6.8554e-06 5.6219e-06 4.7406e-06 4.3131e-06 

0.0075 1.1538e-05 9.7850e-06 8.4569e-06 7.0425e-06 5.6713e-06 4.4492e-06 

0.0050 1.2420e-05 1.1204e-05 1.0171e-05 8.9030e-06 7.3687e-06 5.1384e-06 

0.0025 1.3178e-05 1.2554e-05 1.1973e-05 1.1178e-05 1.0032e-05 7.4983e-06 

0 1.3850e-05 1.3850e-05 1.3850e-05 1.3850e-05 1.3850e-05 1.3850e-05 

-0.0025 1.4522e-05 1.5146e-05 1.5727e-05 1.6522e-05 1.7668e-05 2.0202e-05 

-0.0050 1.5280e-05 1.6496e-05 1.7529e-05 1.8797e-05 2.0331e-05 2.2562e-05 

-0.0075 1.6162e-05 1.7915e-05 1.9243e-05 2.0657e-05 2.2029e-05 2.3251e-05 

-0.0100 1.7246e-05 1.9434e-05 2.0845e-05 2.2078e-05 2.2959e-05 2.3387e-05 

-0.0125 1.8736e-05 2.1122e-05 2.2288e-05 2.3020e-05 2.3337e-05 2.3400e-05 
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-0.0150 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 2.3400e-05 

 

 
Fig 1.5: Through-the-thickness distribution of the volume fraction of the ceramic phase in the functionally graded plate. 

 
Fig 1.6: Variation of Young’s modulus with the non-dimensional thickness for different values of Sigmoid law index n 
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Fig 1.7: Variation of Poisson’s ratio with the non-dimensional thickness for different values of Sigmoid law index n. 

 
Fig 1.8: Variation of coefficient of thermal deformation with the non-dimensional thickness for different values of Sigmoid law 

index n. 

Case 2; Mori-Tanaka technique 

The results of the effective material properties of case 2 computed using the power  law index distribution are presented. Table 2.1-2.4 

and fig 2.1-2.1 describe the effective material properties. The following equation is used to evaluate the bulk modulus of Aluminum-

ceramic FGM, shear modulus has been provided in the table 1.1, 𝐵 =
𝐸

3(1−2𝑣)
. Calculations show that 𝐵1 = 58.33𝐺𝑃𝑎 and 𝐵2 =

215.65𝐺𝑝𝑎. 
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Table 2.1: Power law Index (n) and corresponding Bulk modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 

0.0125 1.1649e+11 1.1572e+11 1.1493e+11 1.1375e+11 1.1175e+11 1.0522e+11 

0.0100 1.1564e+11 1.1399e+11 1.1232e+11 1.0978e+11 1.0550e+11 9.2126e+10 

0.0075 1.1469e+11 1.1206e+11 1.0938e+11 1.0532e+11 9.8596e+10 7.9919e+10 

0.0050 1.1362e+11 1.0987e+11 1.0606e+11 1.0035e+11 9.1234e+10 7.0379e+10 

0.0025 1.1239e+11 1.0736e+11 1.0229e+11 9.4852e+10 8.3738e+10 6.4149e+10 

0 1.1097e+11 1.0446e+11 9.7991e+10 8.8871e+10 7.6554e+10 6.0729e+10 

-0.0025 1.0926e+11 1.0104e+11 9.3071e+10 8.2520e+10 7.0186e+10 5.9149e+10 

-0.0050 1.0717e+11 9.6914e+10 8.7431e+10 7.6021e+10 6.5072e+10 5.8548e+10 

-0.0075 1.0446e+11 9.1799e+10 8.0977e+10 6.9737e+10 6.1469e+10 5.8371e+10 

-0.0100 1.0066e+11 8.5168e+10 7.3674e+10 6.4197e+10 5.9364e+10 5.8336e+10 

-0.0125 9.4322e+10 7.5872e+10 6.5686e+10 6.0095e+10 5.8482e+10 5.8333e+10 

-0.0150 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 
 

Table 2.2: Power law Index (n) and corresponding shear modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 

0.0125 5.8079e+10 5.7852e+10 5.7620e+10 5.7264e+10 5.6647e+10 5.4490e+10 

0.0100 5.7830e+10 5.7338e+10 5.6826e+10 5.6021e+10 5.4585e+10 4.9326e+10 

0.0075 5.7548e+10 5.6745e+10 5.5892e+10 5.4524e+10 5.2032e+10 4.3167e+10 

0.0050 5.7225e+10 5.6050e+10 5.4780e+10 5.2711e+10 4.8927e+10 3.7058e+10 

0.0025 5.6849e+10 5.5224e+10 5.3438e+10 5.0507e+10 4.5266e+10 3.2225e+10 

0 5.6402e+10 5.4221e+10 5.1793e+10 4.7832e+10 4.1166e+10 2.9212e+10 

-0.0025 5.5854e+10 5.2971e+10 4.9743e+10 4.4615e+10 3.6920e+10 2.7720e+10 

-0.0050 5.5158e+10 5.1360e+10 4.7139e+10 4.0834e+10 3.2992e+10 2.7135e+10 

-0.0075 5.4221e+10 4.9181e+10 4.3766e+10 3.6595e+10 2.9888e+10 2.6961e+10 

-0.0100 5.2827e+10 4.6009e+10 3.9325e+10 3.2266e+10 2.7927e+10 2.6926e+10 

-0.0125 5.0282e+10 4.0741e+10 3.3491e+10 2.8622e+10 2.7070e+10 2.6923e+10 

-0.0150 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 
 

Table 2.3: Power law Index (n) and corresponding Young’s modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 

0.0125 1.4941e+11 1.4876e+11 1.4811e+11 1.4711e+11 1.4538e+11 1.3941e+11 

0.0100 1.4870e+11 1.4731e+11 1.4588e+11 1.4363e+11 1.3967e+11 1.2557e+11 

0.0075 1.4791e+11 1.4565e+11 1.4327e+11 1.3950e+11 1.3274e+11 1.0974e+11 

0.0050 1.4700e+11 1.4371e+11 1.4020e+11 1.3457e+11 1.2452e+11 9.4575e+10 

0.0025 1.4594e+11 1.4142e+11 1.3654e+11 1.2868e+11 1.1506e+11 8.2809e+10 

0 1.4469e+11 1.3867e+11 1.3210e+11 1.2167e+11 1.0473e+11 7.5526e+10 

-0.0025 1.4317e+11 1.3527e+11 1.2666e+11 1.1341e+11 9.4235e+10 7.1925e+10 

-0.0050 1.4124e+11 1.3095e+11 1.1987e+11 1.0390e+11 8.4667e+10 7.0512e+10 

-0.0075 1.3867e+11 1.2519e+11 1.1126e+11 9.3440e+10 7.7159e+10 7.0091e+10 

-0.0100 1.3488e+11 1.1696e+11 1.0015e+11 8.2907e+10 7.2424e+10 7.0008e+10 

-0.0125 1.2809e+11 1.0367e+11 8.5879e+10 7.4101e+10 7.0356e+10 7.0000e+10 

-0.0150 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 
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Table 2.4: Power law Index (n) and corresponding Poisson’s ratio through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 0.2868 0.2868 0.2868 0.2868 0.2868 0.2868 

0.0125 0.2862 0.2857 0.2852 0.2845 0.2832 0.2792 

0.0100 0.2857 0.2846 0.2835 0.2819 0.2794 0.2728 

0.0075 0.2851 0.2834 0.2817 0.2793 0.2756 0.2711 

0.0050 0.2844 0.2820 0.2797 0.2765 0.2725 0.2760 

0.0025 0.2836 0.2805 0.2775 0.2739 0.2710 0.2849 

0 0.2827 0.2788 0.2753 0.2718 0.2720 0.2927 

-0.0025 0.2816 0.2769 0.2732 0.2709 0.2762 0.2973 

-0.0050 0.2803 0.2748 0.2715 0.2722 0.2831 0.2993 

-0.0075 0.2788 0.2727 0.2710 0.2767 0.2908 0.2999 

-0.0100 0.2767 0.2711 0.2734 0.2848 0.2967 0.3000 

-0.0125 0.2737 0.2723 0.2821 0.2945 0.2995 0.3000 

-0.0150 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 
 

 

 
Fig 2.1: Variation of bulk modulus with the non-dimensional thickness for different values of power law index n, using Mori-

Tanaka technique. 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120
http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 13, Issue 9, September 2023              144 

ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120    www.ijsrp.org 

 
Fig 2.2: Variation of shear modulus with the non-dimensional thickness for different values of power law index n, using Mori-

Tanaka technique. 

 

 
Fig 2.3: Variation of modulus of elasticity with the non-dimensional thickness for different values of power law index n, using 

Mori-Tanaka technique. 
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Fig 2.4: Variation of Poisson’s ratio with the non-dimensional thickness for different values of power law index n, using Mori-

Tanaka technique. 

 

Result of case 2 with Sigmoid law distribution 

The results of the effective material properties of case 2 computed using the sigmoid law distribution are presented. Table 2.5-2.9 and 

fig 2.5-2.9 describe the smooth transfer of material properties across the interface unlike the ones obtained using one single power law 

index. 

 

Table 2.5: Sigmoid law index n, and corresponding Bulk modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 1.1727e+11 

0.0125 1.1090e+11 1.1442e+11 1.1593e+11 1.1682e+11 1.1719e+11 1.1726e+11 

0.0100 1.0836e+11 1.1200e+11 1.1404e+11 1.1567e+11 1.1675e+11 1.1725e+11 

0.0075 1.0630e+11 1.0954e+11 1.1170e+11 1.1378e+11 1.1561e+11 1.1709e+11 

0.0050 1.0448e+11 1.0695e+11 1.0887e+11 1.1100e+11 1.1332e+11 1.1627e+11 

0.0025 1.0280e+11 1.0419e+11 1.0542e+11 1.0700e+11 1.0911e+11 1.1314e+11 

0 1.0121e+11 1.0121e+11 1.0121e+11 1.0121e+11 1.0121e+11 1.0121e+11 

-0.0025 9.9508e+10 9.7825e+10 9.6163e+10 9.3715e+10 8.9786e+10 7.8921e+10 

-0.0050 9.7451e+10 9.3799e+10 9.0290e+10 8.5369e+10 7.8263e+10 6.4767e+10 

-0.0075 9.4847e+10 8.8871e+10 8.3447e+10 7.6554e+10 6.8419e+10 5.9546e+10 

-0.0100 9.1292e+10 8.2589e+10 7.5538e+10 6.8093e+10 6.1828e+10 5.8441e+10 

-0.0125 8.5623e+10 7.3978e+10 6.6683e+10 6.1359e+10 5.8851e+10 5.8335e+10 

-0.0150 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 5.8333e+10 
 

Table 2.6: Sigmoid law index n, and corresponding Shear modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 5.8301e+10 

0.0125 5.6382e+10 5.7467e+10 5.7915e+10 5.8174e+10 5.8280e+10 5.8301e+10 

0.0100 5.5556e+10 5.6726e+10 5.7353e+10 5.7838e+10 5.8153e+10 5.8297e+10 

0.0075 5.4863e+10 5.5943e+10 5.6634e+10 5.7275e+10 5.7819e+10 5.8252e+10 

0.0050 5.4228e+10 5.5085e+10 5.5723e+10 5.6413e+10 5.7135e+10 5.8014e+10 

0.0025 5.3623e+10 5.4126e+10 5.4558e+10 5.5102e+10 5.5804e+10 5.7078e+10 

0 5.3034e+10 5.3034e+10 5.3034e+10 5.3034e+10 5.3034e+10 5.3034e+10 

-0.0025 5.2388e+10 5.1727e+10 5.1053e+10 5.0022e+10 4.8262e+10 4.2589e+10 

-0.0050 5.1577e+10 5.0058e+10 4.8496e+10 4.6111e+10 4.2201e+10 3.2741e+10 
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-0.0075 5.0505e+10 4.7832e+10 4.5112e+10 4.1166e+10 3.5620e+10 2.8102e+10 

-0.0100 4.8953e+10 4.4652e+10 4.0530e+10 3.5374e+10 3.0211e+10 2.7029e+10 

-0.0125 4.6240e+10 3.9525e+10 3.4285e+10 2.9789e+10 2.7432e+10 2.6925e+10 

-0.0150 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 2.6923e+10 
 

Table 2.7: Sigmoid law index n, and corresponding Young’s modulus through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 1.5004e+11 

0.0125 1.4463e+11 1.4768e+11 1.4894e+11 1.4968e+11 1.4998e+11 1.5004e+11 

0.0100 1.4234e+11 1.4560e+11 1.4736e+11 1.4872e+11 1.4962e+11 1.5003e+11 

0.0075 1.4043e+11 1.4341e+11 1.4534e+11 1.4714e+11 1.4867e+11 1.4990e+11 

0.0050 1.3869e+11 1.4104e+11 1.4280e+11 1.4472e+11 1.4674e+11 1.4922e+11 

0.0025 1.3704e+11 1.3841e+11 1.3959e+11 1.4109e+11 1.4303e+11 1.4658e+11 

0 1.3544e+11 1.3544e+11 1.3544e+11 1.3544e+11 1.3544e+11 1.3544e+11 

-0.0025 1.3370e+11 1.3193e+11 1.3013e+11 1.2740e+11 1.2279e+11 1.0829e+11 

-0.0050 1.3153e+11 1.2749e+11 1.2339e+11 1.1723e+11 1.0731e+11 8.4058e+10 

-0.0075 1.2868e+11 1.2167e+11 1.1467e+11 1.0473e+11 9.1058e+10 7.2846e+10 

-0.0100 1.2459e+11 1.1350e+11 1.0314e+11 9.0458e+10 7.7939e+10 7.0257e+10 

-0.0125 1.1756e+11 1.0065e+11 8.7807e+10 7.6920e+10 7.1228e+10 7.0004e+10 

-0.0150 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 7.0000e+10 
 

Table 2.8: Sigmoid law index n, and corresponding Poisson’s ratio through-the-thickness. 

 

z/h n=0.4 0.8 1.2 1.8 2.8 6 

0.0150 0.2868 0.2868 0.2868 0.2868 0.2868 0.2868 

0.0125 0.2826 0.2849 0.2859 0.2865 0.2867 0.2868 

0.0100 0.2811 0.2833 0.2846 0.2857 0.2864 0.2867 

0.0075 0.2798 0.2818 0.2831 0.2845 0.2857 0.2866 

0.0050 0.2788 0.2802 0.2814 0.2827 0.2842 0.2861 

0.0025 0.2778 0.2786 0.2793 0.2802 0.2815 0.2841 

0 0.2769 0.2769 0.2769 0.2769 0.2769 0.2769 

-0.0025 0.2761 0.2752 0.2745 0.2734 0.2721 0.2713 

-0.0050 0.2751 0.2735 0.2722 0.2711 0.2715 0.2837 

-0.0075 0.2739 0.2718 0.2710 0.2720 0.2782 0.2961 

-0.0100 0.2725 0.2709 0.2724 0.2786 0.2899 0.2996 

-0.0125 0.2712 0.2732 0.2805 0.2911 0.2983 0.3000 

-0.0150 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 
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Fig 2.5: Variation of shear modulus with the non-dimensional thickness for Sigmoid law index n, using Mori-Tanaka 

technique. 

 
Fig 2.6: Variation of Bulk modulus with the non-dimensional thickness for Sigmoid law index n, using Mori-Tanaka 

technique. 
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Fig 2.7: Variation of modulus of elasticity with the non-dimensional thickness for Sigmoid law index n, using Mori-Tanaka 

technique. 

 
Fig 2.8: Variation of modulus of elasticity with the non-dimensional thickness for Sigmoid law index n, using Mori-Tanaka 

technique. 

Case 3: Result of exponential law distributions 

The results of the effective material properties of case 3 computed using the exponential law distribution are presented. Table 3.1 and 

fig 3.1 describe the exponential variation of material properties of functionaly graded material through-the-thickness. 

 

 

 

 

 

 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120
http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 13, Issue 9, September 2023              149 

ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 

https://dx.doi.org/10.29322/IJSRP.13.09.2023.p14120    www.ijsrp.org 

Table3.1: Exponential law distribution of variation of material properties through-the-thickness. 

 

𝑧/ℎ 𝐸(𝑧) 𝑉(𝑧) 𝛼(𝑧) 𝐾(𝑧) 
0.0150 4.2700e+11 0.1700 4.3000 65 

0.0125 3.6727e+11 0.1782 4.9520 72.2964 

0.0100 3.1589e+11 0.1869 5.7029 80.4119 

0.0075 2.7170e+11 0.1959 6.5676 89.4384 

0.0050 2.3370e+11 0.2054 7.5634 99.4781 

0.0025 2.0101e+11 0.2154 8.7102 110.6448 

0 1.7289e+11 0.2258 10.0310 123.0650 

-0.0025 1.4870e+11 0.2368 11.5519 136.8794 

-0.0050 1.2790e+11 0.2483 13.3035 152.2445 

-0.0075 1.1001e+11 0.2603 15.3207 169.3344 

-0.0100 9.4621e+10 0.2729 17.6438 188.3427 

-0.0125 8.1385e+10 0.2861 20.3191 209.4847 

-0.0150 7.0000e+10 0.3000 23.4000 233 
 

 
Fig3.1: Variation of Young’s modulus and Poisson’s ratio with the non-dimensional thickness for exponential law 

distributions. 

 

Conclusion 

       Functionally graded materials are presented as a good replacement for composites. These materials aim to overcome the 

delamination problems commonly encountered in ordinary composites. They are commonly used in aerospace industrial applications 

where environmental factors are harsh. The analysis of effective material properties of functionally graded plates was conducted using 

two different homogenization schemes: the rule of mixture and the Mori–Tanaka scheme. These schemes were employed to obtain 

effective material properties that continuously vary through-the- thickness. It was observed that the effective material properties 

estimated by the rule of mixture model are larger than those obtained with the Mori–Tanaka scheme. In the single power-law function, 

stress concentrations appear on one of the interfaces where the material is continuous but changes rapidly across the interface. Here, the 

volume fraction is calculated using two power-law functions to ensure that material properties are smoothly distributed across interfaces, 

as described in Figures 1.6-1.9 and 2.5-2.9. 

       We will determine which of the two techniques provides better estimations as we study the influence of each homogenization 

scheme on displacements and stresses using the finite element method in our upcoming research. We will employ the equilibrium 

governing equations, displacement-strain relations, and relevant constitutive laws to analyze the static deformation of functionally 

graded composites under bi-sinusoidal loading conditions. The results obtained from each of the schemes will be compared with 

analytical solutions in the literature. 
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