
International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 38

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

A Novel AI Approach for Cloud Data Replication

Nilesh Suresh Jain

Principal Software Engineer at Oracle America Inc.

DOI: 10.29322/IJSRP.13.10.2023.p14206

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206

Paper Received Date: 16th August 2023

Paper Acceptance Date: 24th September 2023

Paper Publication Date: 6th October 2023

Abstract- In cloud, replication enables automatic, asynchronous

copying of objects across buckets. Replication serves two

purposes, with the main one being to provide high availability in

case nodes or shards fail. Enabling Object Storage replication is

as simple as creating a replication policy on the source bucket

that identifies the region and the destination bucket to replicate

to. After the replication policy is created, the destination bucket

is read-only and updated only by replication from the source

bucket. Objects deleted from the source bucket after policy

creation are automatically deleted from the destination bucket.

When replication is enabled, accidental data change operation

results in permanent data loss, deleting or corrupting objects

from both source and destination bucket. This problem applies to

most existing storage systems. In this research, an AI algorithm

to detect and protect against accidental data loss is proposed,

which takes the replication decisions in advance by monitoring

and acting before the data loss occurs. In addition, algorithm is

proposed to determine lifecycle policy for the objects created in

target bucket. Experimental results show that proposed algorithm

is the ideal candidate for replication of the cloud data across

buckets, as it minimizes the accidental data loss, total number of

SLA violations, average response time and total execution time

to resolve each incident as compared to the existing setup.

Index Terms- Artificial intelligence (AI), Backup/recovery,

Cloud, Data Replication, Fault-tolerance, High availability,

Machine Learning (ML), Reliability

I. INTRODUCTION

nabling Object Storage replication is as simple as creating a

replication policy on the source bucket that identifies the

region and the bucket to replicate to. After the replication policy

is created, the destination bucket is read-only and updated only

by replication from the source bucket. Objects uploaded to a

source bucket after policy creation are asynchronously replicated

to the destination bucket. Objects deleted from the source bucket

after policy creation are automatically deleted from the

destination bucket. Objects uploaded to a source bucket before

policy creation are not replicated.

Any object in the destination bucket with the same name as an

object in the source bucket is overwritten by replication. The

name, metadata, ETag, and MD5 value of a replicated object

match those of the original object in the source bucket. These

attributes are not replicated from the source because the archival

state, modified timestamp, and creation timestamp can all vary.

A destination bucket is not automatically created when a

replication policy is created. Prior to creating the replication

policy on the source bucket, create the destination bucket. A

bucket can be in the Standard (Object Storage) or Archive

Storage tier as a source or destination. Replication in chains is

not supported. A single replication policy can be applied on a

given source bucket. Each bucket used as a destination for

replication can only have one source. For every replication

source bucket, there can only be one destination. A replication

source can never also be a destination bucket.

Following the creation of the replication policy, the destination

bucket becomes read-only and is only updated via replication

from the source bucket. The destination bucket receives an

automatic replication of any objects uploaded to the source

bucket. Object from the destination bucket is automatically

cleared when an object is deleted from the source bucket. A

replication destination bucket cannot be deleted unless

replication is stopped, and the bucket is made writable once

more. Replication can be used in conjunction with Lifecycle

Management rules that control object deletion and archiving.

However, lifecycle policies must respect the replication

destination bucket's read-only characteristics. It is impossible to

implement a lifecycle policy that removes objects from the

replication destination bucket. Any replication and lifecycle

policy combination you implement should be carefully examined

and tested.

FIGURE 1. OBJECT STORAGE SAME-REGION REPLICATION

FIGURE 2. OBJECT STORAGE CROSS-REGION REPLICATION

E

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/
https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206

International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 39

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

FOR DISASTER RECOVERY

Figure 1 represents the data replication setup in same region.

With the configuration shown in Figure 2, you can activate the

application in the primary region and store objects in a read-write

bucket. The applications can be passive and synchronizing with

the primary while the objects are replicated by Object Storage to

the secondary region read-only bucket [6]. Data replicated to the

destination bucket can be accessed for business continuity in the

event of a disaster that prevents access to the source bucket.

To effectively manage data, one must replicate it. It gives you

many advantages that can completely change your business by

enabling you to create multiple copies of your data in various

locations. Its support for real-time analytics is one of its key

benefits. You can support your business intelligence and machine

learning initiatives by synchronizing data from various sources in

real-time, such as cloud-based reporting. Imagine being able to

run predictive models on user behavior data to provide tailored

recommendations in real-time or imagine being able to update

your dashboards with the most recent data. Faster data access is a

significant additional benefit. By storing data in multiple places,

you can access it from the servers that are nearer to your users,

lowering latency and enhancing data retrieval performance. As a

result, users in various locations will be able to access data

without annoying delays. With data replication, server

performance can be greatly improved. By distributing data traffic

across several servers, you can improve load balancing and

resource utilization. For instance, offloading complex analytical

queries to data warehouses or data lakes through replication can

lighten the load on your operational databases, resulting in better

system performance and scalability. Not only that, but data

replication is a dependable disaster recovery plan. Any business

may experience catastrophic data loss because of system

malfunctions or disruptions, leading to monetary losses and

operational disruptions. It mitigates these risks by creating

redundant copies of data in multiple locations, allowing you to

quickly switch to alternative data sources in case of disruptions

or failures.

Data replication, a crucial process that ensures data backup,

fault tolerance, and improved network accessibility, entails

duplicating and regularly updating data in multiple locations. The

choice of a particular type depends on the use for which the

replicated data is intended and how it will be accessed. Here are

the various forms of data replication.

Without actively checking for updates or changes, snapshot

replication takes a "snapshot" of a database as it is at the

beginning of the replication process. As a result, the replicated

copy of the database is static and always displays the data as it

did at the time. When significant changes occur quickly or when

data in the database doesn't change frequently, snapshot

replication is ideal. It allows for capturing a specific data state,

which can be helpful for historical or reference purposes.

Using a powerful technique called transactional replication, a

full copy of the database is made while new data is continuously

being captured and copied in real-time as the database changes.

As modifications are replicated in the order they are made, this

guarantees that the replicated copy stays consistent with the

original database. When you need to make sure that changes to

data made by log-based incremental replication are replicated in

real-time, transactional replication is especially effective when

combined with key-based incremental replication. This method is

appropriate for environments where there is a lot of data

modification activity because it supports high volumes of read,

write, and delete activity.

Data from various sources can be combined into a partial

replication of a single database using the incredibly effective

technique of merge replication. Merge replication makes sure

that all alterations are made to the combined database by

gathering and aggregating changes made by multiple users across

various locations. Merge replication has the exceptional ability to

quickly identify and resolve conflicting changes, which is a

notable replication advantage. Conflicts may occur when

merging changes made by multiple users at different locations

into the replica.

Peer-to-peer replication depends on the continuous exchange

of transactional data between nodes. A peer-to-peer setup ensures

that data changes are propagated in real-time across all nodes by

having every node in the same network constantly sync its

databases with one another. Additionally, since all nodes are

writable, data modifications are possible from anywhere in the

world and are immediately reflected in all other nodes,

guaranteeing real-time consistency irrespective of the point of

origin of the change.

Restore and Backup Replication makes it possible to return

replicated databases to the main database and server from which

the backup was originally made. The replication settings,

however, cannot be preserved if you need to retrieve a backup of

a replicated database to a different database or server. In such

circumstances, all publications and subscriptions would need to

be created from scratch.

Replication of data in the cloud has several advantages,

including distribution, accuracy, and accessibility. Accessibility

is improved for both customers and employees when data is

replicated across various hybrid cloud instances. To ensure that

systems are always current and available, high-availability

storage and active cluster failover can be supported by replicated

data across multiple clusters.

Accuracy means making sure you always have access to data

that is up to the minute accurate. Your organization can support

identical copies of the same fundamental data that is accurate and

current with the most recent customer interactions and database

transactions with the right infrastructure and resources. Many

organizations will use redundant cloud environments for a

variety of geographical reasons to better serve their customers or

distributed research teams. As a result, local users can perform

better. These remote environments can sync successfully and

make use of the most recent data thanks to a strategic cloud data

replication plan. Due to the large number of redundant cloud

servers that share the same data, emergency recovery is made

possible, allowing for more effective and precise disaster

recovery plans. Depending on your requirements, cloud data

replication ensures that you can rely on their accurate data in hot

or cold clusters for immediate recovery or long-term storage.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 40

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

II. RELATED WORK

Users can store their files in the cloud so they can access

them via the internet from any location [1]. Benefits of cloud

storage include lower costs, easier IT management, better user

experiences, and disaster recovery. Any Distributed File System

(DFS) that requires replication must include it in its design. After

a popular file is chosen for replication, Algorithm [2] decides

how many additional replicas should be created for that file.

Depending on the computed confidence values for the candidate

files (popular files), three categories are created for the decision.

Massive amounts of data can be stored and processed using the

Hadoop Distributed File System (HDFS). One of the most crucial

techniques in cloud storage systems is data replication [3]. By

addressing some of the major issues in this category, such as

availability, reliability, security, bandwidth, and data access

reaction time, data replication's fundamental goal is to enhance

performance for data-intensive applications. This study provides

a thorough evaluation and classification of cutting-edge data

replication techniques across number of currently available cloud

computing platforms, using a traditional classification to

characterize existing models and spot unresolved issues.

Data deduplication schemes, data auditing schemes, and

data classification schemes are the three main categories in the

classification. The author only covered the various replication

classifications, not how to carry out the replication. The research

focuses on ways to increase the cloud storage system's

dependability, availability, and high performance with the arrival

of the big data era [4]. Important factors that affect how cloud-

based applications are managed include the number of cloud

users and the amount of cloud resources [5]. Resource

provisioning is one of the most challenging problems to solve for

time-varying and diverse workloads in the resource management

scope as the volume of traffic to cloud-based apps increases.

Users of cloud computing can access storage as well as other

services as needed.

The amount of data produced today necessitates a large

amount of storage [10]. Users have the choice of off-site data

storage and online data access. Of course, using the cloud gives

the user the desired storage. The number of replicas that must be

created and determined statically at the time of cloud system

setup is known as static replication policies [8]. Data replication

needs to be dynamic to account for shifting user demands and

storage capacity trends. Data replication in cloud storage systems

has benefits in terms of reliability and performance, including

fault tolerance, data availability, data locality, and load balancing

[9]. Data blocks stored on the failed data node must be restored

each time it fails to maintain the replication level. For the system,

which is already overworked from user application workloads,

this could represent a sizable burden.

III. PROBLEM STATEMENT

Replication has two functions, the primary one of which is to

ensure high availability if nodes or shards go down. Making a

replication policy on the source bucket that specifies the region

and destination bucket to replicate to is all that is necessary to

enable Object Storage replication. Following the creation of the

replication policy, the destination bucket becomes read-only and

is only updated via replication from the source bucket.

After a policy is created, objects that are deleted from the

source bucket are also automatically deleted from the destination

bucket. Accidental data change operations that are enabled for

replication cause permanent data loss by deleting objects from

both the source and destination buckets. This can also be a result

of corrupted data uploaded to source bucket by software program

or due to manual error. Most of the storage systems in use today

have this issue.

FIGURE 3. OBJECT STORAGE DATA CORRUPTION IMPACTING

SOURCE AND TARGET BUCKET.

Figure 3 represents a scenario of possible data loss. In this

case, corrupted data in source bucket results in corrupting the

data in destination (backup) bucket.

Copying backups

You should back up your data in addition to replicating it. A

backup will allow you to restore your data to the last known good

state in the event of data corruption or accidental deletion.

Additionally, not all data must be replicated instantly. For

instance, scheduling backup replication may be more cost-

effective if you are architecting for disaster recovery and your

application has a longer RTO (Recovery Time Objective) and

RPO (Recovery Point Objective).

FIGURE 4. REPLICATION WITH DATA BACKUP FOR SNAPSHOTS.

For these use cases, the Backup utility shown in Figure 4 can

automate data backup to meet business needs, and these backups

can be set up to copy backups automatically to one or more

Regions or accounts [7]. The length of a copy depends on the

size of your backup and the distance it must travel. Run tests first

to see if your defined RTO and RPO will be impacted by this

cross-Region copy time. More services are being supported,

which is particularly beneficial for those that don't offer real-time

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 41

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

replication to another Region. For more information, consult

your cloud provider's manual. A full copy of each dataset in the

bucket is made when copying backups or taking snapshots,

which increases the processing and storage costs.

Storage Lifecycle

Object Lifecycle Management operates by automatically

acting in accordance with your defined rules. These rules tell

Object Storage what to do on your behalf within a specific

bucket, including deleting supported resources, moving objects

to a different storage tier, and deleting uncommitted multipart

uploads. An object lifecycle policy refers to all the lifecycle rules

for a bucket. Object Lifecycle Management supports a variety of

resources, including objects, object versions, and failed or

uncommitted multipart uploads.

Actions come in two varieties: Transition actions and

Expiration actions. When objects move from one storage class to

another, transition actions determine this. When an object expires

depends on its expiration actions. Costs associated with object

lifecycle expiration vary depending on the time duration you

choose. See Expiring objects for more details. Using the cloud

console or command line interface, you can also configure the

lifecycle. Storage lifecycle policies combined with replication

and backup software only partially address the issue. Lifecycle

policies can only be used at the bucket level, and processing and

maintaining backup copies of all datasets is very expensive.

IV. ALGORITHM

A. Algorithm idea

Proposed AI algorithm in Table I detects and protects against

accidental data loss. Data deletions can now be performed in

either hard or soft mode where AI program determines the mode

of data operation and lifecycle policy for the backup object. Hard

mode performs direct delete while soft mode creates a copy

before performing delete on the target object.
TABLE I

Algorithm 1: Mode of data operation
1. foreach Oi in ListOfObjects {
2. find if Oi exists in Backup bucket
3. if (Oi exists) {
4. Use logic to determine the mode of operation.

(Input: object usage, versions, etc.)
5. if (mode == SOFT) {
6. Set mode of operation to SOFT mode
7. Create a copy of existing object
8. Assign lifecycle policy
9. Replace existing object
 } // endif
10. } else if (Oi NOT exists) {
11. Set mode of operation to HARD mode
12. Add new object to backup bucket
13. } // endelse
14. } // endforeach

B. Algorithm description

Proposed AI algorithm detects and protects against accidental

data loss. Data deletions can now be performed in either hard or

soft mode where AI program determines the mode of data

operation and lifecycle policy for the backup object. Hard mode

performs direct delete while soft mode creates a copy before

performing delete on the target object. Usage of existing objects

along with its size, number of existing backups determines the

outcome of algorithm. Assigning lifecycle policy and marking

artifacts as a critical can also be achieved by suppling necessary

configs to the program.

V. PERFORMANCE EVALUATION

In this section, first, the simulation parameters for running the

simulation are defined. The details of the experimental setup are

then discussed. Finally, the simulation results are presented.

A. Simulation Parameters

The simulation parameter values are taken from Table II.

Requests generated randomly as a combination of same and

different type of datasets performing add, update, delete

operation with and without configuration parameters. Datasets

used were combination of valid and corrupted datasets.

TABLE II. THE FOLLOWING TABLE SUMMARIZES THE SIMULATION

PARAMETERS.

Object storage

bucket

Mode of

operation Result

Add new objects.

(Ten objects added)

HARD mode

(for all

objects)

Datasets added and

replicated in

destination bucket

Add new objects

and update few

existing objects

(Two new objects

added, one existing

object updated)

HARD mode

for all new

objects,

HARD or

SOFT Mode

determined

for remaining

objects

Source and

destination bucket

updated with new

changes. (backup

copy created for

updated objects)

Add new objects,

update few existing

objects, delete

existing objects

(One new object

added, one existing

object updated, two

objects deleted)

HARD mode

for new

object,

HARD or

SOFT Mode

determined

for remaining

objects

Source and

destination bucket

updated with new

changes. (backup

copy created for

updated, deleted

objects)

B. Results

Simulation program, using above algorithm resulted in

avoiding data loss during accidental data delete and corruption

scenarios. Overall cost to store additional data is minimal

compared to alternatives like enabling object versioning or

versioning in combination with object lifecycle policies on the

destination bucket objects.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 42

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

VI. STORAGE

A. Storage tiers

Storage service is a high-performance, internet-scale storage

platform that provides dependable and affordable data durability.

A limitless amount of unstructured data, including analytical data

and rich content like images and videos, can be stored using the

Object Storage service.

You can store or retrieve data directly from the internet or

from the cloud platform using Object Storage in a safe and

secure manner. You can easily manage storage at scale with

Object Storage's many management interfaces. You can start

small and scale easily with the platform's elasticity without

suffering any performance or service reliability degradation.

A specific compute instance is not required for object storage,

which is a regional service. If you have internet access and can

access one of the Object Storage endpoints, you can access data

from anywhere within or outside the Oracle Cloud Infrastructure.

To meet the demands for effective, frequently accessed "hot"

storage, less frequently accessed "cool" storage, and infrequently

accessed "cold" storage, cloud infrastructure provides distinct

storage class tiers. Storage tiers enable you to optimize access

performance when necessary and cut storage costs when

practical.

TABLE III. THE FOLLOWING TABLE SUMMARIZES THE FEATURES OF THE

STANDARD, INFREQUENT ACCESS, AND ARCHIVE TIERS.

Tier

Storage

Cost

Minimum

Retention

Period

Retrieval

Fee

Availability

SLA

Standard Highest None No 99.9%

Infrequent

Access

Cheaper 31 days Yes 99%

Archive Lowest 90 days No Data is

offline and

objects

must be

restored

before they

can be

read.

A storage tier is given to each object that is uploaded to object

storage. The object's storage fees, and any related retrieval

charges are determined by the storage tier property.

B. Storage Cost

Object Lifecycle Management works by taking automated

action based on rules that you define. In this section we analyze

the storage cost of existing and our proposed system.

Considering that each file has an ideal size of 2 MB. We have

used a combination of add, update, delete operations on both

valid and corrupted datasets and repeated each experiment few

times then we have taken average at the end.

TABLE IV. STORAGE COST FOR BUCKETS

LOCATED IN A SINGLE REGION.

Storage

Class

Class A

operations

Class B

operations

Free

operations

(per 1,000

operations)

(per 1,000

operations)

Standard storage $0.005 $0.0004 Free

Nearline

storage and Durable

Reduced

Availability (DRA)

storage

$0.01 $0.001 Free

Coldline storage

$0.02 $0.01 Free

Archive storage

$0.05 $0.05 Free

TABLE V. STORAGE COST FOR BUCKETS

LOCATED IN A DUAL-REGION OR MULTI-REGION.

Storage Class

Class A

operations

(per 1,000

operations)

Class B

operations

(per 1,000

operations)

Free

operations

Standard storage $0.01 $0.0004 Free

Nearline

storage and Durable

Reduced

Availability (DRA)

storage

$0.02 $0.001 Free

Coldline storage $0.04 $0.01 Free

Archive storage $0.10 $0.05 Free

Table IV, provides an example of the cost for storing data in

same region while Table V, provides the cost for storing data in

dual or multi-region. The cost might vary by cloud vendor.

FIGURE 4.

The storage cost usage of the proposed system using new

solution is depicted in Figure 4 using the data from Table VI.

The cost of storing is slightly higher than using the current

process due to backup copies created by our new algorithm. Due

to low backup data storage costs and lifecycle policies to delete

the unwanted datasets, overall impact on cost is low.

 TABLE VI. STORAGE COST FOR

NEW PROPOSED SYSTEM

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 13, Issue 10, October 2023 43

ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206 www.ijsrp.org

Scenario Average

number of

data change

operations/

day

Average

number of

days to store

Increase in

cost/ month

(appx

storage cost

$ 30/TB/

month)

100 datasets,

10GB each
200GB 5 $35

1000

datasets,

10GB each

2000GB 5 $350

10000

datasets with

average size

of 10GB

each

20000GB 5 $3,500

1000

datasets,

10GB each

2000GB 10 $7,000

The overall cost is much lower than using other alternatives

like enabling object versioning or using it in combination with

object lifecycle management policies to achieve the same results.

Other approaches were evaluated but not thoroughly discussed in

the scope of current research work.

VII. CONCLUSION

In this paper, we address the issue of accidental data loss

during data replication and propose an AI programming-based

algorithm that takes the replication decisions in advance by

monitoring and acting before the data loss occurs. Numerical

example and experiments illustrate the benefits of our algorithm

to solve the problem of accidental data loss during data

replication. We have also analyzed accidental data loss scenarios

and discussed alternatives to solve the problem. The outcome of

implementing propose solution may be dependent on other

factors, including storage cost of backup data, size of datasets,

and frequency of data change operations. Evaluating impact of

other alternative approaches will be part of our future work.

REFERENCES

[1] B. Rajkumar, V. Christian, and S. S. Thamarai, Mastering Cloud

Computing, Mc Graw Hill, 2013.

[2] K. Swaroopa, A. S. P. Kumari, N. Manne, et al., “An efficient replication

management system for HDFS management,” Science Direct Material

Proceedings, July 2021.

[3] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, et al., “Data replication

schemes in cloud computing: A survey,” Cluster Compute, vol. 24, pp.

2545-2579, 2021.

[4] Y. Su and W. Zhang, “A multi-index evaluation replication placement

strategy for cloud storage cluster,” in Proc. of the 4th International

Conference on Cloud and Big Data Computing, August 2020, pp. 20-26.

[5] M. Ghobaei-Arani, “A workload clustering based resource provisioning

mechanism using biogeography based optimization technique in the cloud

based systems,” Soft Compute, vol. 25, pp. 3813-3830, 2021.

[6] AWS Cloud Infrastructure (AWS) Documentation, architecture blogs

[Online]. https://aws.amazon.com/blogs/architecture/

[7] Oracle Cloud Infrastructure (OCI) Documentation [Online].

https://docs.oracle.com/en-us/iaas/Content/home.htm

[8] E. Torabi, M. Ghobaei-Arani, and A. Shahidinejad, “Data replica placement

approaches in fog computing: A review,” Cluster Compute, pp. 1-29, 2022.

[9] S. Gopinath and E. Sherly, “A dynamic replica factor calculator for

weighted dynamic replication management in cloud storage systems,”

Procedia Computer Science, vol. 132, pp. 1771-1780, 2018.

[10] S. N. John and T. T. Mirnalinee, “A novel dynamic data replication strategy

to improve access efficiency of cloud storage,” Information System and e-

Business Management, vol. 18, pp. 405- 426, 2020.

[11] I. A. Ibrahim, W. Dai, and M. Bassiouni, “An intelligent data placement

mechanism for replica distribution in cloud storage system,” in Proc. IEEE

International Conference on Smart Cloud, December 2016.

[12] D. Sun, G. Chang, S. Gao, et al., “Modelling a dynamic data replication

strategy to increase system availability in cloud computing environments,”

Journal of Computer Science and Technology, vol. 27, pp. 256-272, 2012.

Nilesh Suresh Jain has been writing since high school, when his elder sister gave

him a journal in which to write down his stories. Nilesh and his family live in

Virginia, USA. A Virginian since 2013, Nilesh received his Master of Computer

Engineering degree from Mumbai University (India), and, after which he

practiced as a software engineer for, CITI group, The Home Depot, Capital One

before joining Oracle America Inc. in 2018.

He is currently working at Oracle, leading technology innovations on Oracle

cloud(OCI), for utility companies across United States. In addition to being a

prolific writer, Nilesh is a devoted philanthropist, and his greatest efforts are

dedicated to support child and adult literacy programs in the United States and

India. (Email: technoNilesh@gmail.com/ nilesh.s.jain@oracle.com)

https://dx.doi.org/10.29322/IJSRP.13.10.2023.p14206
http://ijsrp.org/
https://aws.amazon.com/blogs/architecture/
https://docs.oracle.com/en-us/iaas/Content/home.htm
mailto:technoNilesh@gmail.com/
mailto:nilesh.s.jain@oracle.com

